Peer Reviewed

1

Document Type

Article

Publication Date

1-4-2014

Keywords

Redox, Diaphragm Muscle, Respiratory Disease, COPD, Reactive Oxygen Species.

Funder/Sponsor

Health Research Board (Ireland) (grant number RP/2008/159)

Comments

"This is the peer reviewed version of the following article: Carberry JC1, McMorrow C, Bradford A, Jones JF, O'Halloran KD. Effects of sustained hypoxia on sternohyoid and diaphragm muscle during development. European Respiratory Journal. 2014;43(4):1149-58, which has been published in final form at DOI: 10.1183/09031936.00139512. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."

Abstract

Sustained hypoxia is a dominant feature of respiratory disease. Despite the clinical significance, the effects of sustained hypoxia on the form and function of respiratory muscle during development are relatively underexplored. Wistar rats were exposed to 1 week of sustained hypoxia (ambient pressure 450 mmHg) or normoxia at various time points during development. Sternohyoid and diaphragm muscle contractile and endurance properties were assessed in vitro. Muscle succinate dehydrogenase and myosin heavy chain composition were determined. The role of reactive oxygen species in hypoxia-induced muscle remodelling was assessed. Sustained hypoxia increased sternohyoid muscle force and fatigue in early but not late development, effects that persisted after return to normoxia. Hypoxia-induced sternohyoid muscle fatigue was not attributable to fibre type transitions or to a decrease in oxidative capacity. Chronic supplementation with the superoxide scavenger tempol did not prevent hypoxia-induced sternohyoid muscle fatigue, suggesting that mechanisms unrelated to oxidative stress underpin hypoxia-induced maladaptation in sternohyoid muscle. Sustained hypoxia had no effect on diaphragm muscle fatigue. We conclude that there are critical windows during development for hypoxia-induced airway dilator muscle maladaptation. Sustained hypoxia-induced impairment of upper airway muscle endurance may persist into later life. Upper airway muscle dysfunction could have deleterious consequences for the control of pharyngeal airway calibre in vivo.

Disciplines

Physics | Physiology

Citation

Carberry JC1, McMorrow C, Bradford A, Jones JF, O'Halloran KD. Effects of sustained hypoxia on sternohyoid and diaphragm muscle during development. European Respiratory Journal. 2014;43(4):1149-58

PubMed ID

23766332

DOI Link

10.1183/09031936.00139512

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

Share

COinS