Bax regulates neuronal Ca2+ homeostasis

Beatrice D’Orsi
Royal College of Surgeons in Ireland

Seán M. Kilbride
Royal College of Surgeons in Ireland

Gang Chen
Royal College of Surgeons in Ireland

Sergio Perez Alvarez
Royal College of Surgeons in Ireland

Helena Bonner
Royal College of Surgeons in Ireland

See next page for additional authors

Citation
Bax Regulates Neuronal Ca2+ Homeostasis

Beatrice D’Orsi, 1 Séan M. Kilbride, 1 Gang Chen, 1 Sergio Perez Alvarez, 1 Helena P. Bonner, 1 Shona Pfeiffer, 1 Nikolaus Plesnila, 1, 2 Tobias Engel, 1 David C. Henshall, 1 Heiko Düssmann, 1 and Jochen H. M. Prehn 1

1 Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders and 3U-COEN, Royal College of Surgeons in Ireland, Dublin 2, Ireland; and 2 Institute for Stroke and Dementia Research, DZNE, Großhadern, D-81377 Munich, Germany

Excessive Ca2+ entry during glutamate receptor overactivation (“excitotoxicity”) induces acute or delayed neuronal death. We report here that deficiency in bax exerted broad neuroprotection against excitotoxic injury and oxygen/glucose deprivation in mouse neocortical neuron cultures and reduced infarct size, necrotic injury, and cerebral edema formation after middle cerebral artery occlusion in mice. Neuronal Ca2+ and mitochondrial membrane potential (\(\Delta \Psi_m\)) analysis during excitotoxic injury revealed that bax-deficient neurons showed significantly reduced Ca2+ transients during the NMDA excitation period and did not exhibit the deregulation of \(\Delta \Psi_m\) that was observed in their wild-type (WT) counterparts. Reintroduction of bax or a bax mutant incapable of proapoptotic oligomerization equally restored neuronal Ca2+ dynamics during NMDA excitation, suggesting that Bax controlled Ca2+ signaling independently of its role in apoptosis execution. Quantitative confocal imaging of intracellular ATP or mitochondrial Ca2+ levels using FRET-based sensors indicated that the effects of bax deficiency on Ca2+ handling were not due to enhanced cellular bioenergetics or increased Ca2+ uptake into mitochondria. We also observed that mitochondria isolated from WT or bax-deficient cells similarly underwent Ca2+-induced permeability transition. However, when Ca2+ uptake into the sarco/endoplasmic reticulum was blocked with the Ca2+-ATPase inhibitor thapsigargin, bax-deficient neurons showed strongly elevated cytosolic Ca2+ levels during NMDA excitation, suggesting that the ability of Bax to support dynamic ER Ca2+ handling is critical for cell death signaling during periods of neuronal overexcitation.

Key words: Bcl-2 family protein; cerebral ischemia; endoplasmic reticulum; excitotoxicity; mitochondria; NMDA

Introduction

Overactivation of glutamate receptors (“excitotoxicity”) has been implicated in stroke, traumatic brain injury, Alzheimer’s disease, and amyotrophic lateral sclerosis (Foyouzi-Youssefi et al., 2000, Mattson, 2007, Hardingham and Bading, 2010). Depending on duration and severity, excitotoxic injury induces necrotic or apoptotic cell death (Ankarcrona et al., 1995, Lankiewicz et al., 2000, Ward et al., 2007, D’Orsi et al., 2012), although other forms of cell death, such as necroptosis and parthanatos, have also been reported (Cregan et al., 2002, Yu et al., 2002, Wang et al., 2004b, Andrabi et al., 2008, Yuan and Kroemer, 2010). In all instances, neuronal Ca2+ overloading through extrasynaptic NMDA or Ca2+-permeable AMPA receptors is the initial cell death trigger (Choi, 1987, Hardingham and Bading, 2010).

The proapoptotic bax gene is a key mediator of apoptotic cell death in neurons (Deckwerth et al., 1996, Vekrellis et al., 1997, Cregan et al., 1999, Putcha et al., 1999). Bax is normally localized in the cytosol or loosely attached to the mitochondria. Upon a variety of apoptotic stimuli, Bax undergoes conformational changes, leading to its translocation, oligomerization, and insertion into the outer mitochondrial membrane (Youle and Strasser, 2008). Bax oligomerization initiates outer mitochondrial membrane permeabilization (MOMP) and promotes caspase-dependent or -independent apoptosis (Hsu et al., 1997, Goping et al., 1998, De Giorgi et al., 2002, Youle and Strasser, 2008, Galluzzi et al., 2009). Neurons deficient in bax have been shown to be protected from growth factor withdrawal-, denervation-, proteotoxic-, and oxidative stress-induced neuronal injury (Xiang et al., 1998, Li et al., 2004, Sui and Alway, 2006, Steckley et al., 2007). We and others have shown that deletion of bax is also protective against excitotoxic apoptosis (Chang et al., 2004, Sánchez-Gómez et al., 2011, D’Orsi et al., 2012). Although excitotoxic necrosis leads to an immediate loss of neuronal ion and energy homeostasis, excitotoxic apoptosis is characterized by an initial recovery of both, followed by mitochondrial cell death engagement (Ankarcrona et al., 1995, Bonfoco et al., 1995, Luetjens et al., 2000, Ward et al., 2007, D’Orsi et al., 2012). This mode of cell death is characterized by a release of apoptosis-inducing factor, activation of calpain and Poly(ADP-ribose) polymerase, and initiation of predominantly caspase-independent cell death pathways (Lankiewicz et al., 2000, Cao et al., 2007, Norberg et al., 2008).
Interestingly, recent evidence suggests that Bcl-2 family proteins, apart from their role in regulating apoptosis, are vital for the regulation of mitochondrial function, bioenergetics, and Ca^{2+} handling (Pinton et al., 2000, Scorrano et al., 2003, Chen and Dickman, 2004, Wei et al., 2004, Johnson et al., 2005, Oakes et al., 2005, White et al., 2005, Pinton and Rizzuto, 2006, Sheridan et al., 2008). Indeed, it has been suggested that these activities may represent their “daytime” function (Kilbride and Prehn, 2013). Here, we provide evidence that the proapoptotic Bax protein plays a key role in the regulation of neuronal Ca^{2+} homeostasis and through this activity controls cell death pathways upstream and in addition to its role in the mitochondrial apoptosis pathway.

Materials and Methods

Materials

Fetal bovine serum, horse serum, minimal essential medium (MEM), B27 supplemented neurobasal medium, tetramethylrhodamine methyl ester (TMRM), Fluoro-4 AM (acetoxyethyl), and Fura-2 AM were from Invitrogen. All other chemicals, including NMDA, MK-801, and thapsigargin, came in analytical grade purity from Sigma-Aldrich.

Gene-targeted mice

The generation and genotyping of bax^+/− mice has been described previously (D’Orsi et al., 2012). Several pairs of heterozygous breeder pairs of bax-deficient mice were obtained from The Jackson Laboratory and maintained in-house. The genotype of bax^+/− mice was confirmed by PCR, as described by The Jackson Laboratory. The bax^−/− mice were originally generated on a mixed C57BL/6x129SV genetic background using 129SV-derived ES cells, but had been backcrossed for >12 generations onto the C57BL/6 background. As controls, WT mice were used for all experiments. DNA was extracted from tail snips using the High Pure PCR Template Preparation Kit (Roche). Genotyping was performed using three specific primers: 5′-GTGTGACAGATGGCGTAGGG3′ (common), 5′-GAGCTGATCAGACACATCG3′ (wild-type [WT] allele specific), and 5′-CCGGCTCTAGTGGCTACGG3′ (mutant allele specific). All animal work was performed with ethics approval and under licenses granted by the Irish Department of Health and Children. Procedures were reviewed and approved by the Royal College of Surgeons in Ireland Research Ethics Committee.

Preparation of mouse neocortical neurons

Primary cultures of cortical neurons were prepared from embryonic gestation day 16–18 (E16-E18) (D’Orsi et al., 2012). To isolate the cortical neurons, hysterectomies of pregnant female mice were performed after euthanizing mice by cervical dislocation. The cerebral cortices were isolated from each embryo and pooled in a dissection medium on ice (PBS with 0.25% glucose, 0.3% BSA). The tissue was incubated with 0.25% trypsin-EDTA at 37°C for 15 min. After the incubation, the trypsinization was stopped by the addition of fresh plating medium (MEM) containing 5% fetal bovine serum, 5% horse serum, 100 μM penicillin/streptomycin (Pen/Strep), 0.5 mM l-glutamate, and 0.6% d-glucose. The neurons were then dissociated by gentle pipetting and, after centrifugation at 1500 rpm for 3 minutes, the medium containing trypsin was aspirated. Neocortical neurons were resuspended in plating medium, plated at 2 × 10^5 cells per cm^2 on poly-l-lysine-coated plates (final concentration of 5 μg/ml), and then incubated at 37°C and 5% CO_2. The plating medium was exchanged with 50% feeding medium (MEM/embryonic containing 100 μM Pen/Strep, 2% B27, and 0.5 mM l-glutamate), 50% plating medium with additional mitotic inhibitor cytosine arabinofuranoside (600 μM). Two days later, the medium was again exchanged for complete feeding medium. All experiments were performed on days in vitro (DIV) 8–11.

Cell lines

Human prostate cancer DU-145 cells, which lack Bax expression (Xu et al., 2006), and DU-145 Bax cells, which reexpress Bax (von Haefen et al., 2002), were cultured in DMEM (Lonzia) with 4.5 g/L glucose, 100 μM penicillin/streptomycin, and 10% fetal bovine serum and incubated at 37°C in humidified atmosphere with 5% CO_2.

Cerebral ischemia–transient middle cerebral artery occlusion

Transient middle cerebral artery occlusion (tMCAO) was performed as described previously (Gro¨ger et al., 2005). Briefly, bax-deficient (body weight = 24.4 ± 0.4 g) and WT (body weight = 26.6 ± 1.3 g) control mice were initially anesthetized with 5% isoflurane, 30% O_2, and 65% N_2O and maintained with 2% isoflurane, 33% O_2, and 65% N_2O for the duration of surgery. Body temperature was maintained at 36.8–37.4°C with a feedback-controlled heating pad (Heater Control Module; FHC). A flexible laser-Doppler probe (5001 Master; Perimed) was glued onto the exposed left parietal skull over the territory of the MCA for continuous monitoring of regional cerebral blood flow. Thereafter, the left common and external carotid arteries were exposed and ligated. The common carotid artery was incised and a silicone-coated 8-0 nylon monofilament was inserted into the internal carotid artery and advanced until the laser-Doppler signal indicated occlusion of the MCA using an operative microscope. Laser-Doppler flow during occlusion was 8.55 ± 0.84% and 9.75 ± 0.93% of baseline in WT and bax^−/− mice, respectively, indicating ischemic blood flow conditions in this area in both mouse genotypes. Wounds were sutured and all mice were incubated at 34°C and allowed to wake up. Sixty minutes after MCAO, mice were shortly reanesthetized and ischemia was terminated by the removal of the intraluminal silicon-coated suture.

Histological analysis of ischemic neuronal injury

For quantification of neurological deficit score and infarct area/volume, WT (n = 6) and bax^−/− mice (n = 8) were killed 24 h after reperfusion. Brain samples were frozen on dry ice and stored in −20°C. Ten-micrometer coronal sections (n = 14) from each brain were cut with a CM1950 Cryostat (Leica Biosystems) and taken at 50 μm intervals. Sections were stained with cresyl violet/Nissl and infarct area was quantified using an image analysis system (Leica Application Suite V3). Lesion volume was calculated as described previously by Gro¨ger et al. (2005). Data are expressed as percentage of contralateral hemisphere to correct for differences in brain size and brain edema. Mice subjected to tMCAO were evaluated for neurologic deficit on a 5-point scale after 24 h of reperfusion (0 = no deficit; 1 = forelimb weakness; 2 = circling to the affected side; 3 = loss of reflex; and 4 = no spontaneous motor activity; Plesnila et al., 2001). To determine the plasticity of the bilateral posterior communicating artery (PcomA) in WT and bax^−/− mice, four mice of each genotype were perfused with ice-cold saline followed by cresyl violet solution. Next, the brains were removed with the circle of Willis intact and placed in 4% formalin overnight at 4°C before examination with ImageJ software. Pictures were taken at 40X magnification on a camera connected to a surgical microscope (Leica DFC29). Before analysis, the pictures were additionally 3X magnified and the diameter of the PcomAs was measured as a percentage of the basilar artery (BA) diameter (Kitagawa et al., 1998). Statistical analysis was performed using the Mann–Whitney rank-sum test. For evaluation of early ischemic cell death, additional WT (n = 4) and bax^−/− mice (n = 4) as well as sham-operated WT controls that underwent surgery except for the insertion of the silicone-coated 8-0 nylon monofilament into the internal carotid artery (n = 3), were killed 6 h after termination of procedures. Brain samples were removed and 12 μm sections from each sample were collected at the level of dorsal hippocampus (Paxinos and Franklin, 2001). Measurement of cell death was assessed by Fluoro-Jade B (FJB; Millipore) staining as described previously (Engel et al., 2012). FJB is a poly-anionic fluorescein derivate that specifically stains degenerating neurons. Hippocampal FJB-positive neurons were the average of two adjacent sections for CA3 and CA1 for each genotype. Analysis of DNA damage was performed using a fluorescein-based terminal deoxynucleotidyl dUTP nick end labeling (TUNEL) technique, according to the manufacturer’s instructions (Promega; Murphy et al., 2007).

Oxygen-glucose deprivation in mouse neocortical neurons

Cortical neurons from WT and bax^−/− mice, cultured on 24-well plates, were rinsed in a prewarmed glucose-free medium and then transferred to the hypoxic chamber (COY Lab Products Inc.). The hypoxic chamber was set at 5% oxygen for 6 h and maintained at 25°C. After reoxygenation, samples were fixed and subjected to fluorescence microscopy and TUNEL analysis as previously described (Brodman et al., 2008).
had an atmosphere comprising 1.5% O2, 5% CO2, and 85% N2, and the temperature was maintained at 35°C. Neurons were then incubated with oxygen-glucose deprivation (OGD) medium (bubbled with N2 for 1 h before use). The OGD medium consisted of the following (in m/s): 2 CaCl2, 125 NaCl, 25 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 2 MgSO4, and 10 sucrose, pH 6.8. After 45 min of OGD, the medium was removed and the conditioned medium replaced. Thereafter, cells were placed in normoxic conditions (21% O2 and 5% CO2) and allowed to recover for 24 h. The following day, cortical neurons were stained with 1 Mab) diluted 1:10; a purified mouse monoclonal NR1 glutamate receptor antibody (clone N327/95; NeuroMab) diluted 1:10; a mouse monoclonal supernatant NR2A glutamate receptor (M13). The resulting protein construct is flanked by yellow fluorescent protein (YFP) and red fluorescent protein (CFP). Upon removal of OGD, the medium was replaced with fresh experimental buffer. The cells were washed and bathed in 2 ml of experimental buffer containing TMRM and mineral oil was added to prevent evaporation. Neurons were placed on the stage of a LSM 510 Meta confocal microscope equipped with a 63 × 1.4 NA oil-immersion objective and a thermostatically regulated chamber (Carl Zeiss). After 30 minutes of OGD, neurons were exposed to NMDA-induced excitotoxic injury and every 2 min during the rest of the experiments. Intracellular calcium measurements with Fura-2. Fura-2 is a dual-excitation wavelength Ca2+ indicator that can passively diffuse across cell membranes where endogenous esterases cleave the AM group, trapping the dye inside the cells. Cortical neurons were transfected with Fura-2 AM (6 μm) and TMRM (20 ns) for 30 min at 37°C in experimental buffer containing the following (in m/s): 120 NaCl, 3.5 KCl, 0.4 KH2PO4, 20 HEPES, 5 NaHCO3, 1.2 Na2SO4, 1.2 CaCl2, and 15 glucose, pH 7.4. The cells were washed and bathed in 2 ml of experimental buffer containing TMRM and mineral oil was added to top. Neurons were then placed on the stage of an Axiovert 200M motorized microscope equipped with a 40 × 1.3 NA oil-immersion objective and a thermostatically regulated chamber (Carl Zeiss). After a 5 min baseline, cortical neurons were exposed to NMDA-induced excitotoxic injury (100 μM/5 min NMDA). Images were captured every 30 s during baseline and NMDA excitation and every 2 min during the rest of the experiments. Once bound to Ca2+, Fura-2 exhibits an absorption shift that can be observed by alternating the excitation between 340 and 380 nm at a band width of 15 nm while monitoring the emission between 500 and 540 nm (Grillkiewicz et al., 1985). TMRM was excited at 540–585 nm and the emission collected at 602–650 nm, YFP and GFP were excited at 485–514 nm and 455–490 nm, and the emission was recorded at 526–557 nm and 500–540 nm, respectively. The sarcoendoplasmic reticulum Ca2+-ATPases (SERCA) inhibitor thapsigargin (5 μM) was added to the medium 10 min after start of the timelapse recording. Mitochondrial and ER calcium measurements with mtcD2cpv and ERD1cpv, respectively. Neurons, transfected with the mtcD2cpv or the ERD1cpv calcium probe and loaded with TMRM (20 ns) in experimental buffer, were placed on the stage of an LSM 7.10 confocal microscope equipped with a 63 × 1.4 NA oil-immersion objective and a thermostatically regulated chamber set at 37°C (Carl Zeiss). After a 10 min equilibration time, neurons were exposed to 100 μM NMDA for 3 min and glycine (10 μM) with MK-801 (5 μM) was added to block NMDA receptor activation as required (D’Orsi et al., 2012). TMRM was excited at 543 nm and the emission collected with a 560 nm long-pass filter; Fluo-4 was excited at 488 nm and the emission was collected through a 505–550 nm barrier filter. Images were captured every 30 s during NMDA excitation and every 5 min during the rest of the experiments. Intracellular calcium measurements with Fura-2. Fura-2 is a dual-excitation wavelength Ca2+ indicator that can passively diffuse across cell membranes where endogenous esterases cleave the AM group, trapping the dye inside the cells. Cortical neurons were transfected with Fura-2 AM (6 μm) and TMRM (20 ns) for 30 min at 37°C in experimental buffer containing the following (in m/s): 120 NaCl, 3.5 KCl, 0.4 KH2PO4, 20 HEPES, 5 NaHCO3, 1.2 Na2SO4, 1.2 CaCl2, and 15 glucose, pH 7.4. The cells were washed and bathed in 2 ml of experimental buffer containing TMRM and mineral oil was added to top. Neurons were then placed on the stage of an Axiovert 200M motorized microscope equipped with a 40 × 1.3 NA oil-immersion objective and a thermostatically regulated chamber (Carl Zeiss). After a 5 min baseline, cortical neurons were exposed to NMDA-induced excitotoxic injury (100 μM/5 min NMDA). Images were captured every 30 s during baseline and NMDA excitation and every 2 min during the rest of the experiments. Once bound to Ca2+, Fura-2 exhibits an absorption shift that can be observed by alternating the excitation between 340 and 380 nm at a band width of 15 nm while monitoring the emission between 500 and 540 nm (Grillkiewicz et al., 1985). TMRM was excited at 540–585 nm and the emission collected at 602–650 nm, YFP and GFP were excited at 485–514 nm and 455–490 nm, and the emission was recorded at 526–557 nm and 500–540 nm, respectively. The sarcoendoplasmic reticulum Ca2+-ATPases (SERCA) inhibitor thapsigargin (5 μM) was added to the medium 10 min after start of the timelapse recording.
was excited at 405 nm and emission was collected at 445–505 (CFP) and 505–555 nm (FRET). YFP was excited directly using the 489 nm laser diode and detected with the same band-pass filter used for FRET. Images were captured every 1 min throughout these experiments.

Imaging of mPTP opening. mPTP opening was examined by calcine release from mitochondria in DU-145 and DU-145 Bax human prostate cancer cells (von Haefen et al., 2002; Xu et al., 2006). Cells plated on small Willco dishes were first loaded with calcine-AM (1 μM) for 30 min in Krebs solution containing the following (in mM): 140 NaCl; 5.9 KCl; 1.2 MgCl2; 15 HEPES; 2.5 CaCl2, and 10 glucose, pH 7.4. After that, CoCl2 (1 mM) was added for 10 min to quench cytosol calcine and cells were then bathed in 150 μl of Krebs solution containing TMRM (20 nM) and covered by a thin layer of mineral oil. The cells were placed on the stage of an LSM 710 confocal microscope equipped with a 63 × 1.4 NA oil-immersion objective and thermostatically regulated chamber set at 37°C (Carl Zeiss). Calcine AM and cobalt enter the cell, where the AM groups are cleaved from calcine via nonspecific esterase activity in the cytosol and mitochondria. Cobalt cannot enter healthy mitochondria and quenches the cytosolic calcine signal. Upon opening of the mPTP, cobalt enters through the pore and subsequently quenches the mitochondrial calcine fluorescence. Calcine was excited at 488 nm and emission was collected through a 505–550 nm band-pass filter. TMRM was excited at 561 nm, and the emission was collected by a 575 nm long-pass filter. mPTP opening was indicated by a reduction in mitochondrial calcine signal, measured every minute, and expressed as SD of calcine fluorescence.

Isolation of functional mitochondria and measurement of swelling
Mitochondria were isolated from mouse liver or brain synaptosomes following the methods of Frezza et al. (2007). Protein was measured using Bradford reagent (Sigma–Aldrich). Mitochondrial pellets were resuspended in experimental buffer containing 125 mM KCl, 20 mM HEPES, 2 mM KH2PO4, 1 mM EGTA, 4 mM MgCl2, 3 mM ATP, 5 mM malate, and 5 mM glutamate (Chinopoulos et al., 2003) at a final concentration of 1 mg/ml and 100 μl was added to a 96-well flat-bottomed transparent plate. Absorbance at 540 nm was detected in each well at 30 s intervals in a BioTek Synergy HT microplate reader and CaCl2 (100 mM) was then added to induce maximal swelling. All experiments were performed on at least three separate preparations to ensure reproducibility of results.

Imaging analysis
All microscope settings, including laser intensity and scan time, were kept constant for the whole set of experiments. Control experiments were also performed and showed that photo toxicity had a negligible impact. All images were processed and analyzed using MetaMorph Software version 7.5 (Universal Imaging) and the data were presented normalized to the baseline.

Statistical analysis
Data are given as means ± SEM. For statistical comparison, one-way ANOVA followed by Tukey’s post hoc test was used. When another statistical test was used, for example, the Mann–Whitney rank-sum test in Figure 1, B–E, this is stated in the figure legend. p < 0.05 was considered statistically significant.

Results

bax deficiency protects against neuronal cell death in vitro and in vivo
We recently demonstrated that bax-deficient primary mouse cortical neurons were resistant to neuronal injury induced by transient NMDA receptor overactivation (D’Orsi et al., 2012). Because glutamate toxicity is believed to contribute to ischemic and hypoxic neuronal injury, we were interested in determining whether bax deficiency could also reduce ischemic brain injury in vivo. For this purpose, two groups of mice, WT and bax deficient, were subjected to tMCAo. No significant difference in the plasticity of the PcomA was observed in bax-deficient versus WT control mice (n = 4 per genotype) by Mann–Whitney rank-sum test. The mean scores of PcomAs, measured in each hemisphere and calculated as a percentage of the BA diameter, were 21.64 ± 1.84% for bax-deficient mice and 25.92 ± 0.89% for WT mice (Fig. 1A).

WT and bax-deficient mice were subjected to 60 min of transient focal ischemia and reperfused for 24 h. bax deficiency led to a pronounced reduction in ischemic tissue damage. Protection in bax-deficient mice was observed in the lateral striatum and the adjacent cerebral cortex with a significant difference in the infarct size at various brain section levels (Fig. 1B–D). The edema-corrected infarct volume was reduced from 57 ± 4.9 mm3 in the WT mice to 28.5 ± 5.4 mm3 in the bax-deficient mice (Fig. 1E). bax-deficient mice subjected to tMCAo also had significantly reduced neurological deficit scores compared with their WT counterparts (Fig. 1F). The extent of cerebral edema in the bax-deficient animals was also diminished compared with the WT controls after ischemia/reperfusion injury (Fig. 1G).

This surprising, pronounced protection against ischemic tissue injury and edema formation suggested that the effects of bax deficiency were not limited to a protection against mitochondrial apoptosis pathways. To address this, we assessed whether bax deficiency also protected against acute neuronal injury in this in vivo model. The hippocampus is a brain structure particularly vulnerable to ischemic injury. We therefore quantified neuronal injury in the CA1, CA2, and CA3 subfields of the hippocampus after 6 h of reperfusion using FJB, a marker of neuronal cell death (Wang et al., 2004c, Zheng et al., 2004). Acute cell death in the CA1 hippocampal subfield occurred in the absence of nuclear shrinkage and was negative for TUNEL staining (Fig. 2A, top). Hippocampal sections from mice subjected to status epilepticus for 24 h (Engel et al., 2010) showed strong TUNEL in the CA3 and served as positive controls (Fig. 2A, bottom). Interestingly, the number of FJB-positive cells was significantly reduced in the hippocampus of bax-deficient mice compared with their WT controls, suggesting that Bax may regulate TUNEL-negative, necrotic neuronal injury in vivo (Fig. 2C–E). FJB-positive cells were not notable in sham-operated control animals (Fig. 2B, E).

We next turned to a model of OGD-induced neuronal injury in cortical neurons in which the effect of bax deficiency on different modes of cell death could be examined in more detail. Neurons were subjected to OGD for 45 min in the presence or absence of the NMDA receptor antagonist, MK-801, a treatment that “unmasks” neuronal apoptosis (Goldberg and Choi, 1993). Neurons were allowed to recover over a 24 h time period, after which neuronal injury was determined by PI uptake and Hoechst 33258 staining of nuclear chromatin (Fig. 2F,G). Quantification of Hoechst 33258- and PI-positive cells revealed that treatment with MK-801 significantly attenuated OGD-induced neuronal injury in WT neurons, but that the “apoptotic” component of OGD-induced neuronal injury evidenced by nuclear fragmentation and condensation was retained (Fig. 2G). bax deficiency further reduced OGD-induced injury in cultures treated with MK-801. OGD-induced injury in the absence of MK-801 was characterized by PI-positive cell death but occurred largely in the absence of nuclear fragmentation (Fig. 2G). Notably, bax deficiency also protected neurons against OGD-induced injury in the absence of MK-801 (Fig. 2F, G), again suggesting that the protective effects of bax deficiency on neuronal injury were broader than previously assumed.

bax regulates intracellular calcium levels
Because Bcl-2 family proteins have previously been suggested to regulate Ca2+ homeostasis in non-neuronal cells (Scorrano et al.,
Transient focal ischemia was induced for 60 min in WT and bax\(^{-/-}\) mice perfused with ice-cold saline followed by cresyl violet solution (A). Arrows: BA, PcomA. There was no significant difference in the mean values of the PcomA\(s\) between genotypes (\(n = 4\)). B–G, surgery was performed in deep isoflurane/N\(_2\)O anesthesia with controlled ventilation and ischemia and reperfusion were verified by laser-Doppler flowmetry. Mice were killed 24 h after reperfusion and monitored over 24 h. Intracellular Ca\(^{2+}\) was measured 24 h after tMCAo as described in the Materials and Methods section. *\(p < 0.05\) compared with ischemia-exposed WT controls (Mann–Whitney rank-sum test). The photomicrographs show representative images of cresyl violet staining from WT and bax\(^{-/-}\) mice 24 h after the onset of ischemia. The infarct area remained unstained and is highlighted by dashed lines (B). There was no significant difference in the mean values of the PcomA\(s\) between genotypes (\(n = 4\)). C, D, Neurological deficit score (F) was measured 24 h after tMCAo as described in the Materials and Methods session. *\(p < 0.05\) compared with WT controls (Mann–Whitney rank-sum test). Brain water content (G) was quantified and calculated as percentage of contralateral hemisphere to correct for differences in brain size and brain edema. *\(p < 0.05\) compared with contralateral WT controls; \#\(p < 0.05\) compared with ipsilateral WT controls (Mann–Whitney rank-sum test).

2003, Chen et al., 2004b, Mathai et al., 2005, Oakes et al., 2005, Karch et al., 2013), we hypothesized that bax gene deletion may regulate neuronal Ca\(^{2+}\) dynamics, which could explain the broader cell-death-inhibiting activities observed. To address this complexity in more detail, we returned to the more controlled environment of excitotoxic injury (Ward et al., 2007, D’Orsi et al., 2012). Cytosolic Ca\(^{2+}\) transients during NMDA stimulation (Fig. 3B) and underwent DCD at a much lower frequency than their WT counterparts (Fig. 3C). Interestingly, analysis of individual Ca\(^{2+}\) responses showed a significant reduction in cytosolic Ca\(^{2+}\) transients during NMDA (100 \(\mu\)M/5 min) exposure in the bax-deficient compared with the WT neurons, as evidenced by decreased extent of peak Ca\(^{2+}\) influx at the point of NMDA stimulation (Fig. 3D) and the smaller area under the Ca\(^{2+}\) curve during excitation (Fig. 3E). Because the Ca\(^{2+}\)-indicator Fluo-4 AM is a single wavelength dye (Gee et al., 2000, Sato et al., 2007), we also performed these experiments using the ratiometric probe Fura-2 AM, allowing for quantitative determination of intracellular calcium concentration (Tsien et al., 1985, Barreto-Chang and Dolmetsch, 2009). When WT and bax-deficient cortical neurons were exposed to NMDA (100 \(\mu\)M/5
Figure 2.

*\(\text{bax}\) deficiency protects against neuronal injury in the hippocampus and against OGD-induced injury in vitro.

A, Representative images of sections derived from WT \((n = 4)\) mice stained for TUNEL in the CA1 after ischemia/reperfusion for 6 h (top) and in the CA3 after status epilepticus (bottom). Nuclei were counterstained with DAPI. Scale bar, 150 µm. **B–E**, WT \((n = 4)\) and \(\text{bax}^{-/-} (n = 4)\) mice were subjected to tMCAO for 60 min and additional \((n = 3)\) WT mice were sham operated. Mice were killed 6 h after reperfusion and 12 µm sections from each brain sample were collected at the level of dorsal hippocampus. Neurodegeneration was assessed by FJB staining. Representative photomicrographs of sham-operated, negative control (**B**), WT (**C**), and \(\text{bax}^{-/-} (\text{D})\) hippocampal slices stained with FJB showing absence of neuronal injury after sham operation and typical injury after ischemia/reperfusion for 6 h. Scale bar, 250 µm. Hippocampal FJB-positive neurons were the average of two adjacent sections for the CA1, CA2, and CA3 for each genotype (**E**). Means ± SEM are shown. *\(p \leq 0.05\) compared with sham-operated negative control; #\(p \leq 0.05\) compared with ischemia-exposed WT controls (ANOVA, post hoc Tukey). **F**, Cortical neurons from \(\text{bax}^{-/-}\) mice and WT controls were exposed to OGD for 45 min in the presence or the absence of MK-801 \((5 \mu M)\) or sham conditions and allowed to recover for 24 h. Cell death was assessed by Hoechst 33258 \((1 \mu g/ml)\) and PI \((5 \mu M)\) staining and PI-positive nuclei were scored as dead neurons and expressed as a percentage of the total population (**F**). Three subfields containing 300–400 neurons each were captured and at least three wells were analyzed per time point. Means ± SEM are shown. *\(p \leq 0.05\) compared with sham controls; #\(p \leq 0.05\) compared with OGD-treated WT controls (ANOVA, post hoc Tukey). Representative images of PI- and Hoechst 33258-stained neurons are illustrated (**G**). Images were taken at 24 h post treatment. Scale bar, 10 µm.
min), intracellular free calcium levels in absence of bax gene were significantly lower compared with their WT counterparts (peak Fura-2 ratio = 3.77 ± 0.129 and 1.54 ± 0.145; area under Ca2+ curve = 30.94 ± 0.082 and 14.96 ± 1.163 for WT (n = 43) and bax−/− (n = 21) neurons), confirming our previous data using Fluo-4 AM.

Analysis of Δψm kinetics using TMRM showed a significant increase in the TMRM fluorescence of the WT neurons within a 1–2 h time period after NMDA excitation, evidence of hyperpolarization of the Δψm (Fig. 4A,C), followed by a final depolarization of the Δψm. In contrast, although bax-deficient neurons showed similar initial mitochondrial membrane depolarization (reduction in TMRM fluorescence to 0.71 ± 0.07 and 0.64 ± 0.04 for WT and bax-deficient neurons, respectively), they did not display a considerable Δψm hyperpolarization, as evidenced by the constant basal levels of TMRM fluorescence observed after the initial NMDA exposure (Fig. 4B,C) and showed a significantly reduced incidence of late Δψm depolarization.

bax reintroduction recovers NMDA-induced Ca2+ transients

We next explored the possibility that the observed differences in cytosolic, NMDA-induced Ca2+ transients were due to altered glutamate receptor levels in the WT versus bax-deficient neuron cultures as a consequence of different development of cortical neurons before isolation or during cultivation. Using quantitative Western blotting, we noted no significant alteration in the protein levels of the extrasynaptic NMDA receptor NR2B, which largely mediates cytosolic Ca2+ transients and excitotoxic injury (Zhou and Baudry, 2006; Liu et al., 2007; Lau and Tymianski, 2010, Martel et al., 2012). Furthermore, no statistically significant difference in NR1 and AMPA receptor GluA2 levels were observed between WT and bax-deficient neurons (Fig. 5A,B). We noted a tendency toward reduced levels of the synaptic, “neuroprotective” NMDA receptor subunit NR2A (Liu et al., 2007, Lau and Tymianski, 2010); however, this did not reach the level of statistical significance (Fig. 5A,B).

We next performed bax gene rescue experiments to control for potential differences in NMDA-induced Ca2+ entry. Cortical neurons were transfected with GFP, bax-YFP, or a mutant of bax (bax-9294A-GFP) that is unable to oligomerize at the mitochondrial outer membrane (George et al., 2007) and loaded with Fura-2AM. Again, we noted significantly reduced Ca2+ levels in bax-deficient cortical neurons transfected with GFP compared with their WT counterparts when exposed to NMDA (100 μM/5 min; Fig. 5C,D,G,H). Reintroduction of bax using either WT bax-YFP or the mutant bax-9294A-GFP equally restored neuronal Ca2+ levels to levels observed in WT cortical neurons transfected with GFP (Fig. 5C,E–H).

bax deficiency does not alter free mitochondrial matrix Ca2+ and does not increase cytosolic ATP levels

Previous reports have shown that mitochondria are capable of taking up significant amounts of cytosolic Ca2+ during excitotoxic injury (Sobek et al., 1996; Stout et al., 1998, Yu et al., 2004). We therefore explored whether bax deficiency reduced cytosolic Ca2+ levels by facilitating mitochondrial Ca2+ uptake. To determine whether bax-deficient neurons showed a greater mitochondrial free Ca2+ concentration compared with their WT control neurons, we used a mitochondrial Ca2+ sensor (mtd2cppv) FRET probe (Palmer et al., 2006). As a consequence of Ca2+ binding, the mtd2cppv FRET probe produces an increase in FRET efficiency, allowing for a detection of free matrix...
Ca\(^{2+}\). WT and bax-deficient cortical neurons were transfected with the mitochondrial Ca\(^{2+}\) sensor and exposed to 100 \(\mu\)M NMDA for 5 min, after which changes in FRET efficiency and \(\Delta \psi\) were detected. During NMDA excitation, WT neurons showed an initial increase in free mitochondrial matrix Ca\(^{2+}\) that was associated with \(\Delta \psi\) depolarization; however, this was followed by a rapid recovery to baseline levels after termination of the excitotoxic insult (Fig. 6A). bax-deficient neurons showed a similar, if not reduced increase in free mitochondrial Ca\(^{2+}\) during NMDA excitation (Fig. 6B, D). Analysis of Ca\(^{2+}\) traces of WT and bax-deficient neurons showed no significant difference in peak mitochondrial Ca\(^{2+}\) levels (Fig. 6E) or the area under the mitochondrial Ca\(^{2+}\) curve (Fig. 6F). In WT neurons that underwent delayed excitotoxic apoptosis, we also detected a substantial secondary matrix Ca\(^{2+}\) increase concurring with DCD (Fig. 6A, black arrow, C), whereas bax-deficient neurons showed protec-

Figure 4. bax deficiency normalizes mitochondrial function in response to NMDA. WT and bax\(^{-/-}\) cortical neurons, preloaded with TMRM (20 nM) and Fura-4AM (3 \(\mu\)M), were exposed to NMDA (100 \(\mu\)M/5 min NMDA) and monitored by a confocal microscope (LSM 710). A, B, Representative TMRM traces measuring alterations in mitochondrial membrane potential (\(\Delta \psi\)) of NMDA-treated WT and bax\(^{-/-}\) cortical neurons. WT neurons showed a delayed excitotoxic apoptosis in which neuronal mitochondria transiently recovered their energetics and a late \(\Delta \psi\) depolarization occurred hours after the initial NMDA excitation (A). bax\(^{-/-}\) neurons showed a complete and persistent recovered \(\Delta \psi\) to basal levels even at later times after excitation (B). C, Average of TMRM fluorescence in WT (\(n = 71\)) and bax\(^{-/-}\) (\(n = 52\)) neurons before and after NMDA excitation are represented. A significant increase in the whole-cell TMRM fluorescence of the WT neurons was identified within the 1–2 h period after NMDA excitation. In contrast, bax gene deletion did not produce a considerable hyperpolarization of \(\Delta \psi\). Means ± SEM are shown from at least three independent experiments for each genotype. \(*p < 0.05\) compared with WT control \(\beta\)-actin (ANOVA, post hoc Tukey).

Figure 5. bax reintroduction normalizes Ca\(^{2+}\) responses in bax-deficient neurons. A, B, Western blot and densitometric analysis comparing the levels of the NMDA receptors NR2A, NR2B, and NR1 and the AMPA receptor GluA2 in WT and bax\(^{-/-}\) neurons. \(\beta\)-actin was used as loading control. Experiments were repeated three times with different preparations with similar results. Densitometric data are normalized to \(\beta\)-actin. Means ± SEM are shown from \(n = 3\) independent experiments \((p < 0.05\); ANOVA, post hoc Tukey). C–H, WT and bax\(^{-/-}\) cortical neurons separately cultured on Wilco dishes were transfected with a plasmid overexpressing bax fused to GFP, a plasmid expressing a mutant bax-9294A fused to GFP, which is unable to oligomerize at the MOM, or a plasmid expressing GFP alone as a control. Twenty-four hours after transfection, neurons were preloaded with TMRM (20 nM) and Fura-2 AM (6 \(\mu\)M) for 30 min at 37°C before being monitored with an Axiovert 200M motorized microscope. Neurons were exposed to 100 \(\mu\)M NMDA for 5 minutes, after which alterations in \(\Delta \psi\) and intracellular Ca\(^{2+}\) were monitored in single cells over a 24 h period. Representative traces of NMDA-treated WT + GFP (A), bax\(^{-/-}\) + GFP (B), bax\(^{-/-}\) + bax (C), and bax\(^{-/-}\) + bax-9294A (D) neurons depicting the extent of peak Ca\(^{2+}\) influx at the point of stimulation (100 \(\mu\)M/5 min NMDA). Mean peak Ca\(^{2+}\) influx at NMDA exposure time (E) and mean area under Ca\(^{2+}\) curve during NMDA exposure (F) between groups (\(n = 27\) WT + GFP; \(n = 25\) bax\(^{-/-}\) + GFP; \(n = 26\) bax\(^{-/-}\) + bax; \(n = 29\) bax\(^{-/-}\) + bax-9294A) are quantified. Means ± SEM are shown. \(*p < 0.05\) compared with NMDA-treated WT controls (ANOVA, post hoc Tukey).
Figure 6. *bax* deficiency does not influence free mitochondrial matrix Ca\(^{2+}\) levels and does not prevent ATP depletion during NMDA excitation. Cortical neurons derived from WT and *bax* \(^{-/-}\) mice were transfected with either the mitochondrial Ca\(^{2+}\) sensor FRET probe (mtcD2cpv) and after 24 h mounted on the stage of a LSM 710 microscope or the ATP-sensitive (ATeam) FRET probe and after 24 h mounted on the stage of a LSM Sleive duxcan microscope. Fluorescent measurements were recorded for TMRM, FRET, CFP, and YFP by time-lapse confocal microscope. FRET probe imaging data are expressed as a ratio of FRET/CFP. TMRM was used as a mitochondrial marker and quantified by time-lapse confocal microscopy experiments. Representative traces and corresponding images of NMDA-treated neurons depicting the extent of peak mitochondrial damage (FRET probe activation) simultaneously with a delayed NMDA exposure are quantified. Data are means \(\pm\) SEM of at least \(n = 3\) independent experiments \((p \leq 0.05)\) and mean area under mitochondrial Ca\(^{2+}\) curve \((F)\) between the genotypes \((n = 47\) and 46 neurons for WT and *bax* \(^{-/-}\), respectively) during NMDA exposure are quantified. Data are means \(\pm\) SEM from at least \(n = 3\) independent experiments \((p \leq 0.05)\). ANOVA, post hoc Tukey.)

A, B, C, D, E, F, G, H: Representative images and quantification data of TMRM, FRET, CFP, and YFP by time-lapse confocal microscope.
tion against the secondary increase in free mitochondrial Ca$^{2+}$ (Fig. 6 B, C).

Bax and other Bcl-2 family proteins have also been shown to be important for mitochondrial bioenergetics and quality control (Karbowskii et al., 2002, Du et al., 2004, Yang et al., 2004, Karbowskii et al., 2006). We next investigated whether bax-deficient neurons showed an enhanced bioenergetic capacity that may allow them to more efficiently extrude cytosolic Ca$^{2+}$, for example, through plasma membrane Ca$^{2+}$-dependent ATPases (PMCA), a key enzyme in the control of neuronal Ca$^{2+}$ levels during excitotoxic injury (Budd and Nicholls, 1996). To determine cytosolic ATP levels at the single-cell level, we used an ATP-sensitive FRET probe ATeam (Imamura et al., 2009) and monitored $\Delta\psi_m$ in parallel by time-lapse confocal microscopy in WT and bax-deficient neurons. We detected a rapid, comparable ATP depletion during NMDA stimulation (100 μM/5 min) followed by similarly restored ATP levels in both genotypes (recovery to baseline: FRET/CFP fluorescence to 0.97 ± 0.008 and 1.03 ± 0.022 for WT and bax$^{-/-}$ neurons; Fig. 6G,H), indicating the bax gene deletion did not affect cytosolic ATP dynamics. Interestingly, bax-deficient neurons displayed a significantly lower baseline cytosolic ATP level compared with their WT controls (100 ± 4.43% and 67.19 ± 10.31% for WT and bax$^{-/-}$ neurons, respectively; p = 0.05 compared with NMDA-treated WT controls by ANOVA, post hoc Tukey), suggesting that bax-deficient neurons displayed, if anything, a decreased bioenergetic capacity.

bax deficiency does not modulate Ca$^{2+}$-induced permeability transition

We next tested the hypothesis that bax deficiency may prevent the formation of a Ca$^{2+}$-induced mitochondrial permeability transition pore (mPTP) (Narita et al., 1998); that is, that Bax may be a physiologic activator of this pore (Antonsson et al., 1997, Vysokikh et al., 2002). We examined a putative requirement for Bax in mPTP opening using isolated mitochondria from mouse brain synaptosomes and mouse liver. The effect of exposure of bax-proficient and bax-deficient mitochondria on Ca$^{2+}$-induced mitochondrial swelling were detected by a rapid loss of absorbance at 540 nm. Alamethicin, a membrane-channel-forming peptide that induces mitochondrial swelling similar to mPTP (Andreyev et al., 1998, Andreyev and Fiskum, 1999), was used as a positive control to produce maximal swelling of mitochondria. As reported previously (An et al., 2004), Ca$^{2+}$ addition to isolated mitochondria from WT (and bax-deficient) mouse brain synaptosomal preparations failed to induce significant mitochondrial swelling, with no differences detected between the two genotypes (Fig. 7A,B). In contrast, mitochondrial swelling in response to Ca$^{2+}$ was more pronounced in mitochondria isolated from mouse liver, however, this was not modulated by bax deficiency (Fig. 7C,D). We also failed to detect a significant difference in mitochondrial swelling between WT and bax/bak double-deficient mitochondria isolated from human HCT 116 colon cancer cells (data not shown).

To analyze mPTP in intact cells, we also performed a calcine/Co$^{2+}$-quenching assay (Su et al., 2004) in bax-deficient and bax-reexpressing DU-145 cells. The prostate carcinoma cell line DU-145 carries a frameshift mutation in the bax gene and thus does not express Bax (Xu et al., 2006). The calcine/Co$^{2+}$ assay is based on the concept that mitochondrial calcine fluorescence is quenched by Co$^{2+}$ after the irreversible opening of the mPTP. Cells were exposed to sequential addition of the Ca$^{2+}$ ionophore ionomycin (1 and 10 μM) both in the presence and absence of the mPTP inhibitor cyclosporine A (CsA; 10 μM; Fig. 7E–G). When 1 or 10 μM ionomycin was added to bax-deficient DU-145 cells, calcine fluorescent signals remained within mitochondria (Fig. 7E–G, gray), whereas significant calcine leakages from mitochondria was seen in bax-reexpressing DU-145 cells (Fig. 7E–G, blue). The mPTP inhibitor CsA abolished the ionomycin-induced calcine leakage in bax-deficient DU-145 cells (Fig. 7E–G, black), as well as bax-reexpressing DU-145 cells (Fig. 7E–G, red). Next, intracellular Ca$^{2+}$ levels were determined in bax-deficient DU-145 and bax-reexpressing DU-145 cells using Fura-2 AM. bax deficiency also reduced ionomycin-induced Ca$^{2+}$ transients compared with DU-145 cells in which bax was reintroduced (Fig. 7H). These data suggested that Bax modulates Ca$^{2+}$ transients intracellularly (Fig. 5), but also demonstrated that effects of Bax on Ca$^{2+}$-induced mPTP in intact cells are downstream of its effects on cytosolic Ca$^{2+}$ levels.

bax deficiency regulates ER Ca$^{2+}$ handling

Previous reports, although partially contradictory, have suggested that Bcl-2 family proteins may be involved in regulating cell death by influencing ER calcium stores and signaling (Scorzano et al., 2003, Oakes et al., 2005, Rong et al., 2009, Chipuk et al., 2010). We next tested the hypothesis that bax-deficient neurons showed elevated ER Ca$^{2+}$ levels in response to NMDA excitation or showed altered ER Ca$^{2+}$ fluxes. To monitor free ER calcium in our single-cell system, we used the ER Ca$^{2+}$ sensor (ERD1cpv) FRET probe (Palmer et al., 2006). Transfection of WT and bax-deficient cortical neurons with the FRET probe revealed that ER Ca$^{2+}$ levels were not significantly altered during the NMDA exposure [mean peak FRET/CFP fluorescence 1.039 ± 0.008 and 1.051 ± 0.008 for WT (n = 22) and bax$^{-/-}$ (n = 33) neurons, respectively] or at baseline conditions [mean FRET/CFP fluorescence 1.04 AU ± 0.03 and 1.02 AU ± 0.01 for WT (n = 39) and bax$^{-/-}$ (n = 40) neurons, respectively].

The concentration of Ca$^{2+}$ within the ER is suggested to highly exceed the concentration of Ca$^{2+}$ within the cytosol ([Ca$^{2+}]_{\text{ER}} \sim 100–500$ μM, [Ca$^{2+}]_{\text{cyt}} \sim 100$ nm; Liu et al., 2004, Peirce and Chen, 2004). The possibility therefore remained that, in bax-deficient neurons, cytosolic Ca$^{2+}$ levels were simply mobilized quicker into the ER than in WT neurons. To test this hypothesis, we inhibited ER Ca$^{2+}$ uptake with the SERCA inhibitor thapsigargin. Thapsigargin (5 μM) was added to the medium of WT and bax-deficient cortical neurons prior (20 min) to NMDA stimulation and ER or cytosolic Ca$^{2+}$ levels and $\Delta\psi_m$ using TMRM were monitored. SERCA inhibition produced a prompt decrease in ER Ca$^{2+}$ in both genotypes followed by similar Ca$^{2+}$ increases before, during, and after NMDA excitation (Fig. 8A,B,F). Detailed analysis of individual ER Ca$^{2+}$ traces showed a significant reduction in the slope of the ER Ca$^{2+}$ flux after thapsigargin treatment in the bax-deficient compared with the WT neurons ($\Delta t = \text{Tg offset time} – \text{Tg onset time} = 3.78$ min ± 0.29 in WT vs 7.36 min ± 0.38 in bax$^{-/-}$; Fig. 8C,D). However, no significant difference was observed in ER Ca$^{2+}$ levels at thapsigargin offset (Fig. 8E). Moreover, quantification of the individual $\Delta\psi_m$ responses showed that the combined presence of the SERCA inhibitor and bax gene deletion prevented a complete NMDA-induced depolarization of the $\Delta\psi_m$ (Fig. 8G–I).

Inhibition of the SERCA also greatly increased intracellular Ca$^{2+}$ levels in response to NMDA in bax-deficient cortical neurons, but not so in WT neurons (Fig. 9A,B). In response to the treatments, 14% of WT neurons did not display Ca$^{2+}$ recovery to basal levels 30 min after NMDA excitation compared with 52% of bax-deficient neurons (Fig. 9C). Reintroduction of bax in bax-deficient cortical neurons using a mammalian expression vector
for bax-YFP again normalized neuronal Ca\(^{2+}\) levels compared with bax-deficient neurons transfected with a plasmid expressing GFP alone (Fig. 9C,D).

Finally, we assessed whether bax deficiency modulated the interaction of Bcl-2 and IP3RII in cortical neurons as deficiency in bax may increase the ability of Bcl-2 to interact with IP3R. This interaction has been reported previously in B-cell lymphoma and in WEHI7.2 mouse lymphoid cells (Rong et al., 2009, Akl et al., 2013). A coimmunoprecipitation assay of Bcl-2 and IP3RII in WT and bax-deficient neurons revealed no difference in Bcl-2/IP3RII

Figure 7. bax deficiency does not modulate mPTP. A–D, Mitochondria (250 μg/ml) isolated from mouse brain synaptosomes (A, B) and liver (C, D) of WT or bax\(^{-/-}\) mice, as described in the Materials and Methods, were preincubated at 30°C in experimental buffer in a 96-well plate at a final volume of 100 μl per well. Absorbance at 540 nm was detected at 30 s intervals and CaCl\(_2\) (100 μmol/l) was added where shown. Alamethicin (80 μg/ml) was added to induce maximal swelling. Results represent average traces from \(n = 3\) experiments. E–G, Cobalt-quenching assay was performed in bax-deficient DU-145 and bax-reexpressing DU-145 Bax human prostate carcinoma cells. Mitochondrial calcine leakage was analyzed after sequential addition of ionomycin (1 and 10 μM) in the presence and absence of the mPTP inhibitor cyclosporine A (CsA; 10 μmol/l) was added where shown. Alamethicin (80 μM) in the presence and absence of the mPTP inhibitor cyclosporine A (CsA; 10 μmol/l) was added where shown. AlamarBlue (80 μg/ml) was added to induce maximal swelling. Results represent average traces from \(n = 3\) experiments. H, bax-deficient DU-145 (\(n = 70\)) and bax-reexpressing DU-145 (\(n = 111\)) prostate cancer cells were exposed to sequential addition of ionomycin (1, 10, and 20 μM) and Ca\(^{2+}\) responses using Fura-2 were recorded and quantified. Cytosolic Ca\(^{2+}\) overloading in response to ionomycin was significantly diminished in the bax-deficient DU-145 compared with bax-reexpressing DU-145 cells. \(*p < 0.05\) compared with DU-145 cells (ANOVA, post hoc Tukey).
interaction between the two genotypes (Fig. 9E). Comparable results were also obtained performing the reverse coimmunoprecipitation (data not shown).

Together, these data suggested that Bax participates in the efficient flux of Ca\(^{2+}\) between cytosol and the ER and that inhibition of this activity may be associated with neuroprotection and reduced cytosolic Ca\(^{2+}\) overloading during excitotoxic injury.

Discussion

In the present study, we set out to explore the role of bax in the setting of Ca\(^{2+}\)-induced neuronal cell death. Using models of ischemic and excitotoxic injury, we demonstrated that bax gene deletion provided broad neuroprotection against excitotoxic neuronal injury and OGD-mediated injury in mouse neocortical neurons in vitro and in cerebral ischemic injury in vivo. Our data suggest that this broad protection may be the result of Bax regulating Ca\(^{2+}\) homeostasis independently from its classical function in the apoptotic cell death machinery or a proposed involvement in mitochondrial PTP opening.

bax deletion is sufficient to confer protection against numerous apoptotic stimuli in cultured neurons in vitro, including neurotrophic factor deprivation and excitotoxic and DNA damage-induced neuronal apoptosis (Deckwerth et al., 1996, Miller et al., 1997, Deshmukh and Johnson, 1998, Xiang et al., 1998, Wang et al., 2004a), because Bak has been reported to be nonfunctional in mature neurons (Sun et al., 2001, Uo et al., 2005). Neurroprotective effects of bax deficiency have also been reported in cerebellar and cortical neurons in glutamate-induced excitotoxicity in vitro (Xiang et al., 1998), in a model of excitotoxic cell death of striatal neurons in vivo (Pérez-Navarro et al., 2005), and in models of hypoxic/ischemic neonatal injury in the hippocampus (Gibson et al., 2001), which involve predominantly apoptotic, caspase-mediated cell death pathways (Hu et al., 2000, D’Sorci et al., 2000).
Figure 9. **bax** deficiency impairs ER Ca^{2+} handling during NMDA excitation. Cortical neurons derived from nontransfected WT or **bax**−/−, **bax**−/− either transfected with a plasmid overexpressing **bax** fused to YFP, or with a vector expressing GFP alone were separately cultured on Wilco dishes. Twenty-four hours after transfection, neurons were preloaded with TMRM (20 nM) and Fura-2 AM (6 μM). Neurons were exposed to thapsigargin (Tg; 5 μM) before NMDA stimulation (100 μM/5 min), after which alterations in Δψ_{m} and intracellular Ca^{2+} were assayed in single cells over a 3 h period. A, B, Representative Ca^{2+} traces of Tg-NMDA-treated WT (A) and **bax**−/− (B) cortical neurons at points of Tg addition and NMDA excitation (100 μM/5 min NMDA). C, D, Ca^{2+} recovery to baseline levels after NMDA excitation (t = 60 min) was separately quantified in WT (n = 138) and **bax**−/− (n = 138) neurons (C) and **bax**−/− + Tg (n = 42) and **bax**−/− + Tg + GFP (n = 35) neurons (D). Means ± SEM are shown. *p = 0.05 compared with WT controls in C or compared with **bax**−/− + Tg + GFP in D (ANOVA, post hoc Tukey). E, WT and **bax**−/− cortical neurons were lysed and immunoprecipitated using a goat polyclonal anti-IP3RII or a normal goat-IgG as an internal control and immunodetected using a mouse monoclonal anti-Bcl-2 and anti-IP3RII antibodies (h.c., heavy-chain; l.c., light chain). β-actin was used as loading control. Then, 200 μg of lysate were used for communoprecipitation and 20 μg of lysate were loaded in the gel as Input. Experiments were performed twice with different preparations and similar results.

bax deficiency [Zhu et al., 2005, Han et al., 2014]. Our study supports these previously reported protective activities, but also demonstrates that **bax** deficiency provides neuroprotection against TUNEL-negative, necrotic injury during ischemic stroke (Figs. 1, 2). Previous reports have also suggested a role of Bax in the regulation of the mPTP (Kennedy et al., 1997, Narita et al., 1998). mPTP opening is generally associated with necrosis rather than apoptosis [Mao et al., 2001, Nakagawa et al., 2005] and has been shown to be involved in excitotoxicity [Li et al., 2009]. In contrast to apoptotic MOMP, the mPTP is a channel of the inner mitochondrial membrane and leads to Δψ_{m} dissipation, cessa-
organelle-targeted aequorin probes or ER-targeted Ca2+ sensors, overexpression of Bcl-2 reduced the loading of intracellular Ca2+ stores, such as the ER and the Golgi apparatus, by increasing Ca2+ leakage in HEK-293 and HeLa cells (Foyouzi-Youssefi et al., 2000, Pinton et al., 2000). It was also suggested that the direct interaction between the BH4 domain of Bcl-2 and the IP3R is responsible for the inhibition of the IP3R activity and apoptosis, reducing resting ER Ca2+ levels and cytosolic Ca2+ oscillations in HeLa and mouse embryonic fibroblasts (Pinton et al., 2000, Rong et al., 2009). Moreover, Bax and Bak were suggested to regulate ER Ca2+ stores, possibly inactivating the inhibitory functions of Bcl-2 and Bcl-xL on the IP3R. Bcl-2 silencing or SERCA overexpression restored both ER Ca2+ and sensitivity of mouse embryonic fibroblasts to apoptotic challenge (Scorrano et al., 2003, Oakes et al., 2005). These findings are partially contradictory with other studies in which Bcl-2 did not show any effect on ER Ca2+ store, although an inhibition of ER Ca2+ release dynamics was proposed (Lam et al., 1994, Distelhorst et al., 1996, He et al., 1997, Wang et al., 2001, Chen et al., 2004a). Our data are consistent with the concept that Bcl-2 family proteins and, in particular, Bax may be involved in controlling ER Ca2+ stores by normalizing the proficient Ca2+ exchange between cytoplasm and ER. Alterations in Ca2+ fluxes between organelles and the cytosol may also be associated with a reduction in Ca2+-induced Ca2+ release from the ER. Our study indicated that neurons lacking bax did not display a substantial Δψ\textsubscript{m} hyperpolarization compared with their WT controls after NMDA excitation (Figs. 4, 8). It is possible that this is a consequence of reduced Ca2+-induced Ca2+ release from the ER, resulting in a decreased stimulation of the Krebs cycle.

In conclusion, our data demonstrate that Bax regulates dynamic Ca2+ signaling between ER and cytosol in neurons and this role is independent of its classical role in the apoptotic cell death machinery. Our data also suggest that targeting Bax may exert broad protective effects against excitotoxic and ischemic neuronal injury and that inhibition of Bax function should be reconsidered as a therapeutic approach for the treatment of neuronal injury.

References

Chen WL, Guo XF, Quan CS, Luan XY (2004b) [The expression and significance of Bcl-2 and bax in each phase of the cell cycle in laryngeal carcinoma]. Zhonghua Er Bi Yan Hou Ke Za Zhi 39:157–161. Medline

Medline
Wang XZ, Zhang SJ, Chen YX, Chen ZX, Huang YH, Zhang LJ (2004c) Effects of platelet-derived growth factor and interleukin-10 on Fas-Fas...