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Partitioning the Proteome: Phase Separation for
Targeted Analysis of Membrane Proteins in Human Post-
Mortem Brain
Jane A. English1,2*., Bruno Manadas1,3., Caitriona Scaife1, David R. Cotter2", Michael J. Dunn1"

1 Proteome Research Centre, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland, 2 Department of Psychiatry,

Royal College of Surgeons in Ireland, Dublin, Ireland, 3 Proteomics Unit, Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal

Abstract

Neuroproteomics is a powerful platform for targeted and hypothesis driven research, providing comprehensive insights into
cellular and sub-cellular disease states, Gene6Environmental effects, and cellular response to medication effects in human,
animal, and cell culture models. Analysis of sub-proteomes is becoming increasingly important in clinical proteomics,
enriching for otherwise undetectable proteins that are possible markers for disease. Membrane proteins are one such sub-
proteome class that merit in-depth targeted analysis, particularly in psychiatric disorders. As membrane proteins are
notoriously difficult to analyse using traditional proteomics methods, we evaluate a paradigm to enrich for and study
membrane proteins from human post-mortem brain tissue. This is the first study to extensively characterise the integral
trans-membrane spanning proteins present in human brain. Using Triton X-114 phase separation and LC-MS/MS analysis,
we enriched for and identified 494 membrane proteins, with 194 trans-membrane helices present, ranging from 1 to 21
helices per protein. Isolated proteins included glutamate receptors, G proteins, voltage gated and calcium channels,
synaptic proteins, and myelin proteins, all of which warrant quantitative proteomic investigation in psychiatric and
neurological disorders. Overall, our sub-proteome analysis reduced sample complexity and enriched for integral membrane
proteins by 2.3 fold, thus allowing for more manageable, reproducible, and targeted proteomics in case vs. control
biomarker studies. This study provides a valuable reference for future neuroproteomic investigations of membrane proteins,
and validates the use Triton X-114 detergent phase extraction on human post mortem brain.
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Introduction

Membrane proteins are at the interface between the cell and its

external environment making them instrumental in synaptic and

neuronal transmission via cell adhesion, cellular trafficking, and

ion transport. These processes are known to be disrupted in

neuropathological disorders such as Alzheimer’s disease, Parkin-

son’s disease, and schizophrenia. Furthermore, membrane pro-

teins constitute one-third of the total proteins encoded by the

human genome [1] making them important pharmacological and

biomarker targets for drug development. Intriguingly, greater than

60% of the major pharmaceutical drug targets are known

membrane proteins [2], emphasizing their crucial role in cellular

dynamics and disease processes.

Despite years of extensive research, comprehensive analysis of

membrane proteins is challenging to say the least [1,3,4]. Integral

membrane proteins are defined as transmembrane proteins, with a

hydrophobic domain that interacts directly with the hydrophobic

core of the lipid bilayer. Thus making analysis by conventional 2-

D gel-based techniques difficult due to their poor solubility, basic

pH, low molecular weight, and tendency to aggregate out of

solution [5]. As a consequence, membrane protein analysis is often

approached by an enrichment process followed by tryptic

digestion and analysis at the peptide level by LC-MS/MS [6].

Strategies traditionally used for enriching for membrane

proteins (for review see [3]), include 1) sub-cellular fractionation

with a series of centrifugations, or with a sucrose density gradient

centrifugation, 2) delipidation to remove the lipid bilayer

surrounding the transmembrane helices, 3) affinity purification,

and 4) removal of non-membrane proteins using high salt and high

pH (3). These multistep protocols are often used in combination

with each other to achieve sufficient power, and require large

amounts of starting material. In addition, they can incur large

protein losses and artifactual contamination. A fifth less docu-

mented enrichment method, phase separation, is not widely

known in proteomics [7], yet it offers huge potential for routine

enrichment and purification of membrane proteins prior to LC-

MS/MS. Triton X-114 separation was first introduced by Bordier

in the early 1980’s [8] and has traditionally been used to enrich for
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and study membrane proteins in bacteria [9–11], although more

recently it has been applied to yeast [12], mouse liver [13], human

cardiac tissue [6], and porcine brain [14]. To our knowledge, this

is the first time phase separation using the Triton X-114 detergent

has been applied to human post-mortem brain. Partitioning of the

membrane and aqueous proteins is achieved by heating the Triton

X-114 to temperatures above 20uC, until it reaches its cloud point.

The detergent enters and partitions the lipid bilayer releasing the

otherwise insoluble transmembrane proteins [6]. A simple low-

speed centrifugation step recovers the membrane proteins in the

detergent phase as an oily pellet, while aqueous proteins are

resolved in the supernatant. As protocols with detergent/

membrane combinations have not been well documented or

qualified for human brain tissue, the aim of this study was to 1)

perform phase separation of detergent and aqueous phase proteins

in human post-mortem brain using Triton X-114, and 2) confirm

enrichment for membrane proteins in the detergent phase using

proteomics. The various proteomic strategies applied in this

manuscript are outlined in the study design in Figure 1.

Results

Triton X-114 Phase Separation
Following phase separation, protein yield as determined by the

Bradford dye binding assay (BioRad), was estimated at 0.45 mg/ml

for the Detergent (DT) phase extract, 1.36 mg/ml for the Aqueous

(AQ) phase extract, and the recovered Pellet (Pt) had 3.38 mg/ml of

protein. Results are based on the average of three samples (Table

S1). Each fraction was resolved in 1 ml of the appropriate buffer,

giving a total of 0.45 mgs for the DT phase, 1.36 mgs for the AQ

phase, and 3.38 mgs for the recovered Pt.

1D-SDS and Western Blotting
Comparisons of the protein banding patterns across samples

(10 mg protein/sample) revealed unique DT and AQ phase

protein fractions, following phase separation (Figure 2). The DT

phase was particularly enriched in protein in the low Mw region

(2–15 kD) in comparison to C and AQ samples, while the medium

to high Mw region (15–250 kD) was depleted with very light

banding in comparison to other samples. In contrast, the AQ

phase banding pattern was much more complex with proteins

abundantly distributed across Mw regions. Finally, the recovered

Pt exhibited patterns similar to that of C tissue with strong bands

present at 50 kD and 15 kD. In support, western blotting (Figure 3)

was used to show an increase in the abundant membrane

associated brain protein MBP [15,16] (18–20 kD), in the DT

fraction in comparison to the AQ phase (Figure 3a). MBP was also

strongly represented in the C and in the recovered Pt at 24 kD,

however the banding pattern differed to that of the DT phase,

where it was enriched in the 18–20 kD region (as specified in the

Chemicon MAB386 data sheet), in comparison to the AQ phase.

GAPDH is a well documented marker of the cytosol [17,18], and

we found this protein enriched in the AQ phase at 40 kD, as

expected, and completely depleted in the DT phase and Pt

fractions (Figure 3b). Together, these results suggest that phase

separation of proteins into DT and AQ fractions was achieved,

using the Triton X-114 technique.

Figure 1. Study design for Triton X-114 phase separation on
human post-mortem brain tissue. a) Following phase partitioning
for two out of the three samples fractionated, Aqueous (AQ) and
Detergent (DT) phase proteins, as well as proteins lost to the pellet (Pt),
were identified by LC-MS/MS analysis. Identified proteins were classified
according to sub-cellular location using GoMiner, and TMHMM was
used to predict the number of transmembrane helices present in each
protein. In b) DT and AQ phase proteins from one of the samples were
isolated by acetone precipitation, resuspended in 2D-PAGE buffer, and
separated by isoelectric focusing in the first dimension, and SDS- PAGE
in the second dimension. The large format 2D gels underwent silver
staining, and 96 of the DT phase proteins were randomly excised for
identification by LC-MS/MS. Identified proteins were classified accord-
ing to sub-cellular location using GoMiner, and TMHMM was used to
predict the number of transmembrane helices present.
doi:10.1371/journal.pone.0039509.g001

Figure 2. Coomassie blue staining confirming phase separation
of DT and AQ phase fractions in comparison to control (C) non-
enriched tissue. Proteins in the DT phase appear enriched at the low
Mw region (2 kD to 15 kD) in comparison to other fractions, while
protein in the 15 kD –250 kD Mw range appears depleted. The AQ
fraction is much more complex with proteins distributed abundantly
from high to low Mw, particularly enriched in the 15 kD to 75 kD region
in comparison to the DT phase. The banding pattern for proteins
recovered from the Pt is similar to that of control tissue, as expected,
with strong bands at 50 kD and 15 kD.
doi:10.1371/journal.pone.0039509.g002

Integral Membrane Proteins in Human Brain
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LC-MS/MS of Triton X-114 Phase Extractions
In order to fully characterise the protein profile of DT and AQ

phase extractions, and assess the protein lost to the Pt, samples

were digested to peptides and injected online to a Thermo LTQ-

Orbitrap. Two independent samples from each fraction were

injected on the MS. For comparative reasons, non-enriched

control tissue from the same cortical brain region also underwent

LC-MS/MS analysis for protein identification. Proteins were

identified according to the criteria presented in the materials and

methods section. On average, 726 proteins were identified in the

DT phase extracts (Tables S2, S3, and S4), 257 proteins in the AQ

phase (Tables S5, S6, and S7), and 382 proteins were recovered in

the Pt (Tables S8 and S9). The number of identified proteins in

each phase are summarised in Figure 4(a). A total of 602 proteins

were identified in the control non-enriched sample from the

insular cortex (Table S10). The number of identified proteins that

overlapped between DT, AQ and Pt fractions for both samples are

presented in Figure S1. By combining the two independent DT

phase samples a total of 1154 unique proteins were identified

(Table S2), including 494 (54%) membrane proteins, following the

removal of 279 duplicate entries. Likewise, combined AQ phase

samples revealed a total of 384 unique protein identifications, after

the removal of 129 duplicate entries (Table S5).

Gene Ontology and Transmembrane Helices Calculations
GoMiner was used to assign a membrane, cytosolic, or

cytoskeletal sub-cellular ontology to identified proteins

(Figure 4b). Gene ontology classification revealed an increase in

membrane proteins present in the DT phase in comparison to the

AQ phase, and the Pt. These results are based on average of two

independent samples per fraction. It is also noteworthy that a large

number of cytoskeletal proteins were present in the DT phase,

suggesting these groups of proteins strongly associate with each

other. To further characterise the properties of the DT, AQ, Pt

and C samples, we used the TMHMM Server to identify the

number of transmembrane spanning helices per protein, in each

fraction. The number of helices present ranged from 1 to 21 for

each protein. The results are summarised in Table 1, and are

illustrated as a bar chart in Figure 5, which clearly shows an

increased number of transmembrane domains present in the DT

phase proteins in comparison to the AQ phase, protein Pt, and C

sample. Most notable are the 99 proteins with at least 1

transmembrane domain, and 23 proteins with 2 transmembrane

helices. Numbers of helices identified for each of the Triton-X114

phases are based on the average of two samples. DT phase

proteins had an average of 194 transmembrane helices, repre-

senting a 5.5 fold increase in comparison to the average number of

helices present in AQ phase proteins, and a 2.3 fold increase in

comparison to control non-enriched tissue from the same brain

region. Also notable is the similar number of helices present in the

control sample and in protein lost to the Pt, in keeping with the

similar banding patterns observed for both samples in Figure 2.

This data further confirms the uniqueness of the DT phase

fraction, that is abundant with large membrane spanning proteins.

2D-PAGE of Triton X-114 Phase Fractions
2D-PAGE and subsequent silver staining of the DT and AQ

phase large format gels produced good quality protein spot

patterns (Figure S2), with the AQ phase being more complex and

having an increased number of protein spots in comparison to the

DT phase. The DT fraction had a well resolved protein spot

pattern, which was surprising given the hydrophobic nature of the

proteins (Figure 6). We randomly excised 96 of these membrane

protein spots and successfully identified 92 by LC-MS/MS (Table

S11). Of the 92 identified proteins, 77 were unique observations

and could be assigned gene symbols for GO ontology classification

according to sub-cellular location. Results confirmed enrichment

of membrane proteins with 62% (48) of the 77 observations being

of membrane protein ontology, while 14% (11) were assigned to

the cytoskeleton protein class, and 6.5% (5) were assigned as

having a cytosolic protein ontology. Figure 6 summarises the sub-

cellular location of the membrane proteins resolved by 2D-PAGE

and identified by LC-MS/MS.

Discussion

Analysis of sub-proteomes and otherwise undetectable protein

classes is becoming increasingly important in the field of

neuroproteomics, where recent investigations have enriched for

and studied the post-synaptic density [19], lipid rafts [20], the

myelin proteome [21,22], neuromelanin granules [23], and the

calmodulin-binding proteome [24], in human post mortem brain.

In this study, we propose a paradigm to enrich for and study

membrane proteins in human post-mortem brain. As integral

membrane proteins are at the interface between the cell and

external environment, and sub-cellular structures, they are

important mediators of cell-to –cell signalling, synaptic transmis-

sion, cellular transport [4], and neuroleptic activity. Analysis of this

sub-proteome in patients and disease models will greatly aid

pathophysiological investigations, yet such studies have not been

broadly applied due to the difficulty in recovering and resolving

transmembrane proteins.

We applied Triton X-114 phase separation to human cortical

tissue and confirmed phase separation into DT and AQ phases by

comparing the protein banding pattern between control non-

enriched tissue and DT and AQ phases (Figure 2). In support,

western blotting showed increased expression of transmembrane

spanning protein MBP in the DT phase in comparison to the AQ

phase (Figure 3), while cytosolic protein GAPDH was depleted in

the DT phase and enriched in the AQ phase, as expected. Our

LC-MS/MS experiment identified a total of 1154 unique DT

phase proteins (Table S2), and confirmed enrichment where 54%

(494) were of membrane protein ontology. DT phase proteins had

an average of 194 transmembrane domains present (Figure 5),

representing a 5.5 fold increase in comparison to AQ phase

proteins, thus confirming phase separation. Furthermore, a 2.3

fold increase in transmembrane spanning proteins was achieved in

comparisons to control non-enriched tissue from the same brain

region, further confirming the method of enrichment. Proteins

identified within the DT phase included glutamate receptors

(GRIA2, GRIA4), vesicular glutamate transporter (VGLU1), G

Figure 3. Western blotting was carried out to assess trans-
membrane spanning protein MBP and cytosolic protein
GAPDH, on C, DT, AQ, and Pt samples. In a) an increase in MBP
(18–20 kD) expression was confirmed in the DT fraction in comparison
to the AQ fraction, while a considerable amount of MPB was lost to the
Pt. In b) we confirmed depletion of cyotsolic protein GAPDH (40 kD) in
the DT phase, as expected, and confirmed enrichment in the AQ phase.
No GAPDH was lost to the Pt fraction.
doi:10.1371/journal.pone.0039509.g003

Integral Membrane Proteins in Human Brain
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proteins (GPR98, GPC5B), sodium channels (SCNAA, SCN3A,

SCN5A, SCN7A), voltage gated and calcium channels (VDAC1,

VDAC2, VDAC3, CAC1F, CAC1B, CAC1E) synaptic proteins

(SV2A, SYNJ1, SNG3, SYNP2, SNP25, STX1A, etc.), vesicle-

associated membrane proteins (VAPA, VAPB, VAMP2), myelin

related proteins (MBP, PLP, MOG, 2,3 CNP), septin proteins

(SEPT 6–13), calcium transporting subunits, and Rab proteins

(RAB 1-15), all of which are interesting targets and warrant

quantitative investigation in psychiatric [25] and neurological

diseases (Table S2). As this method was designed with quantifi-

cation for clinical investigations in mind, it is important to note

that the data obtained from this analysis is quantitative in the form

of spectral counting [20] or the chromatographic peak area for

relative quantification across samples [26].

In addition to membrane proteins, a large number of

cytoskeletal proteins were present in the DT phase (Figure 4),

which is in keeping with the large overlap in protein identifications

observed between the DT and the Pt fractions (Figure S1), and

with our western blot data which showed MBP to be abundantly

expressed in the Pt fraction (Figure 3a). Indeed, co-localisation of

membrane and cytoskeleton proteins was also observed by

Donoghue PM and colleagues, who assessed Trion-X114 phase

separation on human cardiac tissue [6]. On a different note, it is

important to address the poor overlap in protein identifications by

LC-MS/MS (i.e. 297 proteins) between the DT phase of sample 1

Figure 4. Bar chart (a) illustrates the number of proteins identified in the DT phase, AQ phase, and Pt. The reduction in the number of
proteins identified in the AQ phase can be attributed to the complexity of the sample, as evident from the 1D-SDS gel in figure 3. The amount of
protein present in each phase, as determined by Bradford assay, suggests that the AQ phase is more complex than that of the DT phase and Pt. Bar
chart (b) summarises the sub-cellular location of the identified proteins according to membrane, cytoskeletal, and cyotsolic gene ontologies for the
DT, AQ and Pt fractions. Results confirmed enrichment of membrane proteins in the DT phase, were 344 of the proteins were classified as having a
membrane ontology using GO miner. Results from (a) and (b) are based on the average of two independent samples.
doi:10.1371/journal.pone.0039509.g004

Integral Membrane Proteins in Human Brain
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(661 proteins) and sample 2 (790 proteins). This is most likely due

to the properties of the membrane proteins and their affinity for

the column on the chromatography system, whereby increasing

the number of injections would provide a more accurate

representation of proteins present within each sample. In general,

triplicate runs are suggested for differential expression analysis by

MS [27,28] or multiplexing the samples by labelling peptides (e.g.

iTRAQ) [29] prior to MS can be carried out to overcome the

notorious problem of MS reproducibility [30].

That said, we found the Trion X-114 method to be

reproducible in terms of protein recovery from the three

independent samples assessed, where we obtained similar protein

yields for DT, AQ, and Pt fractions from the three independent

samples, with the average protein yield being 0.45 mg/ml and

1.36 mg/ml for the DT and AQ phases, while 3.4 mg/ml of protein

was lost to the Pt (Table S1). Protein recovery of the DT phase

extract was similar to that observed in human cardiac tissue, where

0.5 mg/ml was obtained for the DT phase extract, and 5 mg/ml was

extracted from the AQ phase [6]. Of the 113 proteins identified in

the DT phase extract of the heart, 34% were assigned a

membrane protein ontology using GO miner. Similarly, findings

of a Triton-X-114 phase separation study on porcine brain

identified 331 proteins in the DT phase, 27% of which were

annotated as membrane proteins. In comparison, our method

identified substantially more unique proteins (1154) and more

membrane proteins, including 494 (54%) proteins with a

membrane protein ontology using GO miner. Also, this is the

first Triton-X114 study to examine the number of transmembrane

helices present for the DT phase following enrichment.

LC-MS/MS analysis identified a total of 384 AQ phase

proteins, where neither cytosolic, cytoskeletal, or membrane sub-

cellular ontology’s were particularly prevalent (Figure 5) and the

number of transmembrane helices present was dramatically

reduced in comparison to DT phase proteins, with an average

of 35 helices present in AQ1 and AQ2 samples. The reduced

number of identifications observed in comparison to DT phase

samples is likely due to 1) AQ phase sample complexity, as

indicated by protein banding pattern in Figure 2, and 2) the

protein yield of 1.36 mg which was considerably larger than that

of the DT phase at 0.45 mg. It’s possible that a 2-Dimensional

fractionation of AQ peptides, prior to MS, would improve

identifications [31]. 2D-LC-MS/MS would increase the orthog-

onality of peptide elution, simplifying the mixture and thus

increasing the number of protein identifications [32]. These results

further highlight the need to pre-fractionate complex protein

samples prior to in-depth LC-MS/MS analysis for successful

biomarker identification.

In addition to analysis of DT and AQ phase extracts, we used

LC-MS/MS to assess protein loss incurred from Triton X-114

separation, whereby the pellet from the initial ultracentrifugation

step was retained and solubilised for analysis. Results indicate that

1.4% of protein is lost to the pellet, along with cell debris prior to

phase separation, including several membrane and cytoskeletal

proteins (Figure 4). However, it is possible to recover the proteins

by introducing a wash step of the pellet and adding the ‘‘wash’’

back to the Triton X-114/PBS supernatant prior to phase

separation.

Finally, this study examined the feasibility of profiling the DT

phase proteins with traditional 2D-PAGE technology, as this is

generally regarded as not suitable for resolving large transmem-

brane spanning proteins. Protein spots were relatively well resolved

on the 2D gel, particularly in the low pH region and in the

medium to high Mw regions, while the basic pH and low Mw

regions were poorly populated, as expected [5]. In contrast, the

AQ phase gel has protein features abundantly distributed across

pH and Mw regions, with several protein spots present at the low

Mw region (Figure S2). To assess DT phase proteins that entered

the gel, we used LC-MS/MS to identify 92 protein spots that were

randomly excised, and the sub-cellular location of the identified

proteins were assessed. Of interest, 66% of the identified DT phase

proteins localised to the membrane, further confirming Triton-

X114 enrichment for membrane proteins. That said, only 2 out of

the 92 proteins identified from the gel had transmembrane helices

(Table S11), suggesting these are membrane associated proteins

rather than integral membrane proteins. While the 2D-PAGE

platform is therefore not recommended for the detection of

transmembrane spanning proteins, the technology is very robust

and reproducible, and should not be discarded lightly for analysis

of more soluble sub-proteomes such as that of the AQ phase

extract.

In conclusion, Triton X-114 phase separation is a simple and

efficient technique for partitioning the proteome into hydropho-

bic and hydrophilic fractions, with minimal protein loss incurred.

This pre-fractionation step offers more flexibility and control

when it comes to sample complexity, as once the DT and AQ

phases are recovered, the appropriate proteomic technique can

Table 1. Summary of the number of transmembrane helices
present in proteins identified in the DT phase, in comparison
to the AQ phase, the recovered Pt, and control non-enriched
tissue.

Predicted Helices DT fraction AQ fraction Pt Control

1 99 16 41 41

2 23 5 7 9

3 8 2 5 6

4 12 2 3 4

5 5 0 1 0

6 12 3 6 2

7 4 1 6 3

8 10 4 2 8

9 4 1 2 3

10 1 2 4 2

11 5 1 2 1

12 5 1 0 3

13 2 0 2 0

14 1 0 1 0

15 0 0 0 0

16 0 0 0 0

17 2 0 1 0

18 0 0 0 0

19 3 0 1 0

20 1 0 1 0

21 2 0 1 0

194 35 83 83

Numbers for each of the Triton X-114 fractions are based on the average of two
samples. Results indicate a clear increase in the number of transmembrane
domains present in proteins from the DT phase, with a 2.3 fold increase (194/
83) in the number of transmembrane proteins identified in comparison to
control non-enriched tissue. The number of helices present in the protein lost
to the Pt fraction, and in that of the control sample are very similar, as expected,
and is in keeping with the protein banding pattern observed in Figure 2.
doi:10.1371/journal.pone.0039509.t001

Integral Membrane Proteins in Human Brain
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Figure 5. Bar chart illustrating the number of transmembrane helices present in proteins identified in the DT phase in comparison
to the AQ phase, Pt, and C sample. Numbers for each fraction are based on the average of two samples. Transmembrane helices for each protein
were assigned online using the TMHMM Server (v 2.0), as described in the methods section.
doi:10.1371/journal.pone.0039509.g005

Figure 6. In part (a) we show a large format 2D-PAGE gel of the DT phase fraction, which was subsequently silver stained for
visualisation of protein spots. We randomly excised and identified 92 of the protein spots from the 2D gel by LC-MS/MS. In part (b) the bar chart
summarises the percentage of membrane, cytoskeletal, and cyotsolic proteins identified by LC-MS/MS from the DT phase gel.
doi:10.1371/journal.pone.0039509.g006

Integral Membrane Proteins in Human Brain
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be applied, based on the biochemical properties of the sub-

proteome. For example, DT phase membrane proteins can be

digested to peptides and samples can be multiplexed by labelling

(e.g. iTRAQ) prior to LC-MS/MS analysis so technical

reproducibility is no longer an issue. In contrast, AQ phase

samples could be assessed by applying a 2-Dimensional technique

such as 2D-PAGE or 2D-LC-MS/MS to further reduce sample

complexity and improve proteome coverage. The Triton X-114

sample preparation method can be applied to a broad range of

organisms and tissue types, and can have several applications.

The information presented creates a valuable resource for future

neuroproteomic studies, where targeted analysis of low abundant,

integral, or otherwise undetectable membrane protein in

desirable in the quest to find disease associated biomarkers and

potential drug targets.

Methods

Triton X-114 Phase Separation
The phase separation was carried out in triplicate, on three

independent samples, with one sample appropriately prepared

for 2D-PAGE and the other two samples reserved for LC-MS/

MS. Healthy human post-mortem brain tissue was obtained from

the Stanley Foundation Brain Consortium (www.

stanleyfoundation.com) and ethical approval (application

no. 080) was granted by the Royal College of Surgeons in

Ireland (RCSI) research ethics committee. Briefly, 250 mg of

insular cortex was sonicated on ice, in 3610 second bursts, in

1 ml of PBS containing protease inhibitor cocktail tablets

(Roche). Once solubilised, the three samples were made up to

8 mls with ice cold PBS containing PIC’s, and 2 mls of 10%

Triton X-114 was added (Calbiochem). Samples were incubated

overnight at 4uC on a rotary shaker. Samples were centrifuged at

20,0006gav for 30 min at 25uC to remove cell debris. The

resulting pellet (Pt) was retained and solublised in 1 ml of 1 M

TEAB buffer (Sigma) for MS (62 samples) and in 2D-PAGE lysis

buffer [7 M urea, 2 M thiourea, 20 mM Tris, 2% CHAPS 2%

DTT, 1.6% pharmalyte, pH 8.5] in order to assess protein loss.

The supernatant was placed at 37uC for 30 min to allow the

Triton X-114 to reach cloud point, and the sample was spun at

5,0006gav for 30 min, at 25uC, to partition the sample into

detergent (DT) and aqueous (AQ) phases. The AQ top layer was

removed to a fresh 50 ml tube to which 2 ml of 10% Triton X-

114 was added, and the DT phase oily pellet was resuspended in

8 mls of cold PBS. Both AQ and DT phases were washed three

times to remove contaminants. Acetone precipitation (80% v/v)

was carried out overnight at 220uC to extract protein from both

AQ and DT phases. Following a 30 minute centrifugation spin at

5,0006gav, at 4uC, precipitated protein extracts were resus-

pended in the appropriate buffer. Fractions from one case were

solubilised in standard 2D-PAGE lysis buffer and fractions from

the other 2 cases were dissolved in 1 ml of 1 M TEAB for LC-

MS/MS analysis. Samples were briefly sonicated to aid protein

solubilisation and protein concentration was determined by the

Bradford dye binding assay (BioRad), according to the

manufacturer instructions.

1D-SDS and Western Blotting
To initially examine Triton X-114 phase partitioning, a 1D-

SDS gel was run and subsequently stained with Coomassie blue to

allow comparison of protein banding patterns between control

non-enriched tissue (C), DT and AQ fractions, and the recovered

Pt. Ten micrograms of protein from each sample was denatured

and solubilized in 26Laemmli buffer (Biorad), and separated on

4–20% gradient, 7 cm, precast acrylamide gels (Pierce). The gel

was stained overnight with colloidal Coomassie Brilliant Blue G-

250 (Biorad). Secondly, western blot analysis was used to assess the

transmembrane spanning protein Myelin Basic Protein (MBP) and

cytosolic protein GAPDH, as previously described [33]. Briefly,

5 mg of protein from C, DT, AQ, and Pt fractions were resolved

on 4–20% gradient, 7 cm, precast acrylamide gels (Pierce). Blots

were incubated overnight at 4uC with primary antibodies against

MBP (chemicon MAB386; 1:1000), and GAPDH (abcam; 1:2000),

as optimised. Species specific secondary antibodies were sourced

from GE Healthcare (RPN2124).

LC-MS/MS of Triton X-114 Fractions
For digestion, 50 mg of protein from DT (62) and AQ (62)

fractions, and the Pt (62) was dried by rotary evaporation under

vacuum (SpeedVac, Savant). As a further control, 50 mg of protein

from non-enriched cortical tissue was digested and run alongside

the Triton X-114 fractions. Samples were resuspended in 20 ml

TEAB, and denatured for 10 min at 80uC in the presence of 10 ml

2% RapiGest (Waters). Samples were reduced with 2 ml (50 mM)

TCEP for 60 min at 60uC, followed by alkylation with 2 mL IAA

(200 mM) for 30 min in the dark. Digestion was initiated by

adding 5 ml of sequence grade modified trypsin (Promega; 1 mg/

ml) to each sample, and samples were incubated overnight at 37uC
on a shaker. Digestion was stopped by adding 5 mL formic acid

(0.1% v/v) and samples were evaporated to dryness. Prior to LC-

MS/MS analysis peptides were resuspended in 3% ACN, 0.1%

FA and peptides were analysed online via the Dionex UltiMateH
3000 HPLC System and the Thermo LTQ-Orbitrap. Protein

identification was performed using MASCOT with Uniprot/

SwissProt release 7.6 used as the search database. Proteins with a

minimum of 2 peptides and MASCOT score greater than or equal

to 30 were deemed identified.

Gene Ontology and Transmembrane Helices Calculations
The sub-cellular location of identified proteins were assigned

online using GoMiner gene ontology clustering software (http://

discover.nci.nih.gov/gominer/ [34]. To predict the number of

transmembrane helices present in identified proteins, the swissprot

accession numbers from each fraction were converted for FASTA

format files with uniprot jobs (http://www.uniprot.org/jobs) and

FASTA files were uploaded to the TMHMM Server v 2.0 (http://

www.cbs.dtu.dk/services/TMHMM/).

2D-PAGE of Phase Fractions
Protein pellets from the acetone precipitated DT and AQ phase

fractions were resuspended in standard 2D-PAGE lysis buffer. 2D-

PAGE was carried out as we described previously (26) on pH 3–

10, 24 cm immobilized pH gradient strips (GE Healthcare). For

protein visualisation the PlusOne Silver Staining kit (GE

Healthcare) was used with modifications to allow for subsequent

identification of protein spots by mass spectrometry analysis. DT

phase protein spots were excised from the 2D gel using a manual

spot picker. Spot plugs were destained and proteins were digested

with trypsin as we previously described [33]. Protein spots were

identified by LC-MS/MS on the Agilent Q-ToF with HPLC Chip

Cube interface (160 nl enrichment column, 75 mm6150 mm

analytical column). Protein identification was performed using

the SpectrumMill search engine (Agilent Technologies), with the

IPI Human v3.61.fasta search database. Proteins with a minimum

peptide score of 6, in combination a %SPI .60 were deemed

identified.
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Supporting Information

Figure S1 Venn Diagram summarising the identified
proteins that overlaped between DT, AQ, and Pt
fractions for both samples that underwent phase
separation and LC-MS/MS analysis.

(TIF)

Figure S2 Proteins spot patterns from the a) DT and b)
AQ phase fractions that underwent 2D-PAGE and silver
staining. The AQ phase pattern is more complex than that of the

DT phase, with an increased number of protein spots at both the

high and medium Mw regions, in keeping with previous

observations in the protein assay, and coomassie blue staining of

1D SDS gels.

(TIF)

Table S1 Protein assay results for DT, AQ, and Pt
fractions from the three independent samples that
underwent Triton X-114 phase separation.

(XLS)

Table S2 Unique DT proteins identified from DT1 and
DT2 samples that underwent LC-MS/MS.

(XLS)

Table S3 Proteins identified in DT1 by LC-MS/MS. The

protein Score, Mass, and number of Peptides identified for each

protein are listed in columns D, E, and F respectively.

(XLS)

Table S4 Proteins identified in DT2 by LC-MS/MS. The

protein Score, Mass, and number of Peptides identified for each

protein are listed in columns D, E, and F respectively.

(XLS)

Table S5 Unique AQ phase proteins identified from
AQ1 and AQ2 samples that underwent LC-MS/MS.

(XLS)

Table S6 Proteins identified in AQ1 by LC-MS/MS. The

protein Score, Mass, and number of Peptides identified for each

protein are listed in columns D, E, and F respectively.

(XLS)

Table S7 Proteins identified in AQ2 by LC-MS/MS. The

protein Score, Mass, and number of Peptides identified for each

protein are listed in columns D, E, and F respectively.

(XLS)

Table S8 Proteins identified in Pt1 by LC-MS/MS. The

protein Score, Mass, and number of Peptides identified for each

protein are listed in columns D, E, and F respectively.

(XLS)

Table S9 Proteins identified in Pt2 by LC-MS/MS. The

protein Score, Mass, and number of Peptides identified for each

protein are listed in columns D, E, and F respectively.

(XLS)

Table S10 Proteins identified in control non-enriched
tissue from the Insular Cortex. The protein Score, Mass, and

number of Peptides identified for each protein are listed in

columns D, E, and F respectively.

(XLS)

Table S11 Proteins excised and identified from the
silver stained 2D-PAGE gel of the DT phase extract. A

total of 77 unique proteins were identified by LC-MS/MS.

Proteins marked with * have transmembrane helices present.

(XLS)
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