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1β endogenous receptor antagonist, IL-1Ra (Vezzani et al., 2000). Additionally, NF-

κB pathway can also be activated by IL-1β and TNF-α (Medzhitov and Horng, 2009). 

NF-kB is a protein complex that its activation leads to the transcription of genes 

involved in proinflammatory immune responses, cytokine production and cell 

survival (Ghosh and Hayden, 2008). In addition, P2X7R activation has been linked to 

the CREB transcription factor phosphorylation and activation. The formation of 

CREB/CBP complex is mediated by extracellular calcium influx and promotes 

expression of various genes (Wen et al., 2010). CREB activation by P2X7R has been 

reported to promote an anti-apoptotic survival signal (Wen et al., 2010). However, 

CREB also has been linked to increased hyperexcitability and its overexpression may 

promote epilepsy (Zhu et al., 2012b). 

 

1.16 P2X7 receptor expression and function in diseases of the CNS 

 

A common observation has been the upregulation of the P2X7R in numerous 

experimental models and human brain in chronic neurological disorders. Increased 

levels of P2X7R have been observed in the hippocampus and cortex of Alzheimer’s 

disease models (Diaz-Hernandez et al., 2012) and in the striatum in experimental 

models of Huntington’s disease (Diaz-Hernandez et al., 2009). Additionally, P2X7R 

induction has been observed in degenerating cells in Parkinson’s disease animal 

models (Marcellino et al., 2010; Hracsko et al., 2011). Furthermore, increased of 

P2X7R have been reported in experimental models of ischemia and traumatic brain 

injury (Arbeloa et al., 2012; Kimbler et al., 2012). 

Functional evidence for the involvement of P2X7Rs in pathologies of the CNS has 

also been obtained. A reduction of β-amyloid-induced microglia activation was 

observed in P2X7R-/- mice as well as reduced β-amyloid-induced cell death using 

P2X7R inhibitors (Parvathenani et al., 2003; McLarnon et al., 2006; Sanz et al., 2009; 

Diaz-Hernandez et al., 2012). A reduction in neurodegeneration and motor 

coordination deficits was reported with the selective P2X7R inhibitor, Brilliant Blue 

G (BBG), in a Huntington’s disease model (Diaz-Hernandez et al., 2009). P2X7R 
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4.3.4 Up-regulation of P2X receptors in the hippocampus in epilepsy  

 

To examine whether P2XRs are altered in the present model of epilepsy, qPCR was 

used to first examine the expression of transcripts for P2rx1, P2rx2 and P2rx4 due 

to their alteration after SE published in previous studies (Dona et al., 2009; Engel et 

al., 2012b; Ulmann et al., 2013).  

P2rx1 mRNA levels were increased in all hippocampal subfields in epileptic mice 

(Figure 4.5 A). In contrast, P2rx2 mRNA showed a decrease in CA1 only; no 

differences between groups were observed for CA3 and DG hippocampal regions 

(Figure 4.5 B). The P2rx4 transcript showed the highest increase in the 

hippocampus in epilepsy, with a 4 – 7 fold increase in all hippocampal subfields 

when compared to levels in control animals (Figure 4.5 C). 

To support these mRNA findings, protein levels of these receptors were analysed by 

Western blot. Protein levels of P2X1R and P2X2R were not different between 

epilepsy and control samples for any subfields (Figure 4.6 A, B, C, D). For the P2X4R, 

protein levels were higher only in the CA1 and CA3 when compared to controls 

(Figure 4.6 E, F). 
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Figure 4.5 Altered P2XR transcript levels in the hippocampus in epilepsy 

A,B,C) Real-time qPCR measurement of P2rx1, P2rx2 and P2rx4 mRNA levels for the CA1, 

CA3 and DG hippocampal subfields of control and epileptic mice (n = 9 per group). T-test. 

*p < 0.05. **p<0.01. ns-not significant. 
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Figure 6.12 Reduction in astrocyte numbers in JNJ-47965567 treated animals 

Representative magnification images (40X lens) of GFAP staining of each 

hippocampal subfield from vehicle and JNJ-47965567 epileptic mice. Notice the 

dramatic increase in the number of GFAP positive cells in the vehicle mice when 

compared to JNJ-47965567 treated mice. Clear star-shaped astrocytes can be 

observed in each hippocampal subfields of vehicle epileptic animals. Scale bar = 100 

μm. 
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Figure 6.13 Reduction in astrocytes counts in JNJ-47965567 treated animals 

 

Quantification of the number of GFAP positive cells found in each hippocampal 

subfield from vehicle and JNJ-47965567 epileptic brain slices assessed on 

completion of the experiment, after 21 days (n= 9 vehicle, n= 9 drug). *p < 0.05, ** 

p < 0.01; ns, not significant. 
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6.4 Discussion 

 

This chapter provides supporting evidence for the P2X7R as a novel target for the 

prevention of seizures in epilepsy. The daily administration of JNJ-47965567 to 

epileptic mice produced a reduction in the number of seizures during the drug 

administration period. Remarkably, when the drug was discontinued, seizure 

numbers remained lower for the subsequent 5 days, implying a disease-modifying 

effect. Analysis of tissue showed a profound reduction in gliosis in the JNJ-

47965567-treated mice. Together, these findings support P2X7R antagonists as a 

novel disease-modifying treatment for epilepsy.    

To date, the management of seizures in patients with epilepsy relies heavily on 

antiepileptic drug (AED) therapy. Anticonvulsant activity can be obtained by 

modifying the bursting properties of neurons and by reducing synchronisation in 

neuronal networks. The sites of action of current AEDs exhibiting anticonvulsant 

activity comprise one or more target molecules in the brain, including ion channels, 

neurotransmitter receptors and neurotransmitter metabolising enzymes (Vajda and 

Eadie, 2014). However, although these drugs show excellent safety and tolerability 

improving the lives of many epilepsy patients, most still have adverse side effects 

and a limited effect on the underlying pathology of epilepsy (Loscher and Schmidt, 

2002). There remains a need to develop new AEDs with other mechanisms of action 

and disease-modifying effects.  

  

6.4.1 Limitations of A438079 for the treatment of epilepsy  

Experiments in the present chapter began by assessing the potential of A438079 for 

use in tests on epileptic mice. A438079 has been the drug of choice in experiments 

testing effects of P2X7R antagonists on SE (Engel et al., 2012b; Jimenez-Pacheco et 

al., 2013; Mesuret et al., 2014). In much of this work, A438079 was given intra-

cerebroventricularly to mice. While practical in preclinical work, a systemic route is 

preferable for long-term dosing and for clinical use. Experiments here show 
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systemic A438079 given shortly before intra-amygdala KA reduced seizures in the 

model. This complements and extends earlier findings in the same model (Engel et 

al., 2012b; Jimenez-Pacheco et al., 2013). However, tests of brain concentration 

levels of A438079 found only short-lived levels within the brain, with the drug being 

virtually undetectable by 4 hours. This makes it unsuitable for long-term epilepsy 

studies, where there would be a need to dose mice every 2 – 3 hours; this was 

considered to be complex and largely impractical. Thus, although A438079 has 

seizure suppressive effects when given systemically, its brain concentration levels 

drop very fast, therefore it was excluded for long-term testing against spontaneous 

seizures in the model. 

Instead, we switched to testing JNJ-47965567, which was recently reported to 

display much more favourable pharmaco-kinetics and dynamics than A438079, 

including prolonged brain levels after intraperitoneal administration in rats 

(Bhattacharya et al., 2013). The drug also has a high potency and specificity against 

the P2X7R, with a brain EC50 of 78 ± 19 ng·mL (-1) (P2X7 receptor autoradiography). 

Together, these features led to its selection for long-term studies. Studies here are 

the first to test for anti-epileptic effects of a P2X7R antagonist in chronic epilepsy. 

The study was designed with a ‘drug - on’ and ‘washout’ period, following common 

guidelines (Loscher, 2011). This has the advantage that data were obtained on both 

acute anticonvulsant effects and, any prevailing disease-modifying effects. The 

treatment of mice with JNJ-47965567 (30 mg/kg/twice daily) for 5 days resulted in a 

~ 50 % reduction in the number of seizures occurring in the mice compared to the 

pre-drug baseline recordings. However, vehicle control animals also showed a 

reduction in seizures during the same days, although this was less obvious. This 

could be due to the natural variability of seizure occurrence in the model. Indeed, 

typically the number of seizures tends to reduce slightly by day 10 to 13 (Mouri et 

al., 2008a). A second and perhaps more important factor was the need to lightly 

anaesthetise mice during dosing. Studies have shown that Isoflurane anaesthesia 

may limit the spread of epileptic activity via the enhancement of GABAergic 

inhibition in vivo (Detsch et al., 2002). This may have an anti-seizure effect. 
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Regardless, when treatment was finished, seizure rates in the vehicle group showed 

the expected increase and return to baseline rates in number of seizures per day. In 

contrast, seizure rates in JNJ-treated mice remained very low long after treatment 

had ceased. Together, results suggest JNJ-47965567 has both a modest 

anticonvulsive and a disease modifying effect. 

The effect of JNJ-47965567 in reducing seizures seems to be stronger than what has 

been observed in studies testing other AEDs in epilepsy. A reduction in spontaneous 

recurrent seizures has been observed after the administration of levetiracetam, an 

AED, in rats using the pilocarpine model of epilepsy. However, marked differences 

in response to treatment were observed with some rats showing complete control 

of seizures and others not responding at all (Glien et al., 2002). Thus, although JNJ-

47965567 trials in mice with spontaneous recurrent seizures are laborious and 

time-consuming, such trials should be added to the preclinical characterization of 

novel AEDs. 

 
6.4.2 Lack of effect of JNJ treatment on behaviour in epilepsy 

Anxiety is a common co-morbidity in patients with epilepsy and has been found in 

many models of epilepsy (Engel et al., 2013; Lenck-Santini, 2013). Open field tests 

are commonly used for the analysis of anxiety-related behavioural changes (Prut 

and Belzung, 2003). In this study, animals receiving the P2X7R inhibitor and vehicle 

were assessed using the open field test. Since epilepsy is associated with anxiety, 

animals experiencing more seizures are expected to display greater anxiety. An 

important question remains as to whether it is the underlying damage and 

pathology on the seizures causing the anxiety. Results showed no behavioural 

differences between groups either before treatment or after treatment. This is 

perhaps surprising, since it was reasonable to assume that a drug that decreases 

seizure would also decrease anxiety. This supports, in fact, an emerging view that it 

is the pathology that causes both epilepsy and anxiety (Brandt et al., 2010). 
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These data contrast somewhat with findings on a number of AEDs which have been 

reported to have anxiolytic effects. This includes diazepam (DZP), chlordiazepoxide 

(CDX) and pentabarbitol (PB) (Britton and Britton, 1981). Other AEDs impair 

behaviour, including Phenobarbital, which leads to impairments in midair righting 

reflex, basic associative learning, sensorimotor gating, and anxiety-like behaviour 

(Keith et al., 2003; Forcelli et al., 2012). More studies have reported that Phenytoin, 

Phenobarbital and Valproate treatment reduced locomotor hyperactivity in the 

open-field test in a repeated electroconvulsive seizure rat model (Hidaka et al., 

2008). Thus, JNJ-47965567 appears not to impair performance in the open field 

test, but equally, lacks the anxiolytic benefits of certain other AEDs. 

 

6.4.3 P2X7R inhibition leads to a diminution of microglia and astrocyte 

proliferation in the hippocampus in epilepsy 

A second major finding in this chapter was that gliosis was strongly reduced in 

epileptic mice treated with JNJ-47965567. This is the first study to investigate the 

effects of P2X7R inhibition on gliosis in epilepsy and this finding offers an 

explanation for the disease-modifying effects. Gliosis has been implicated in 

epilepsy via a number of mechanisms including enhanced inflammation signalling 

and altered homeostatic functions. Importantly, previous data showed increased 

P2X7R expression in microglia in epilepsy (Dona et al., 2009). Data here show for 

the first time a significant decrease in microgliosis in all three hippocampal subfields 

of epileptic mice after treatment with JNJ-47965567. The simplest explanation for 

these findings is that blocking the P2X7R for a prolonged time returned microglia to 

a resting state and reduced its proliferation. Therefore, these findings support a 

main role of P2X7R activation in microglia proliferation during seizures in epilepsy.  

It is not possible to know from the current study whether this is a permanent effect 

or whether microgliosis might eventually return. Indeed, the animals remained 

epileptic, albeit having only few seizures compared to vehicle control. Indeed, 

microglia responses are thought to be time-locked to the occurrence of seizures 
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and the extent of activation closely follows their incidence, while astrocytes appear 

to  be involved in perpetuating inflammation even in the long-term after the initial 

injury (Ravizza et al., 2008). If correct, one prediction would be that microgliosis 

may, over extended time-periods, eventually return after JNJ-47965567 treatments 

stopped. However, in the clinical setting such a drug would not be stopped or 

interrupted. This would mean the gliosis-suppressing effects should continue. 

Results here also showed a significant decrease in astrocytes in the CA1 and CA3 

hippocampal subfields in the JNJ-47965567 treated animals when compared to 

vehicle controls. This downregulation of astrocytes in P2X7R inhibitor-treated 

animals is most likely an indirect effect of blocking P2X7R on other cells (e.g. 

microglia). Consistent with this, is the fact that reduction in microglia in JNJ-

47965567 mice was slightly more obvious than astrocytes reduction in the 

hippocampus. In contrast, astrocytes reduction are probably secondary to reduced  

release  of IL-1β from microglia (Rothwell and Luheshi, 2000). No difference in 

astrocyte numbers were observed in the DG hippocampal subfield between JNJ-

47965567 treated mice and the vehicle group. This result could be due to the 

relatively high constitutive expression of the P2X7R in this brain region (Engel et al., 

2012b). Thus, the amount of P2X7R inhibitor delivered may not be sufficient to 

block the native P2X7R expression in that area in epilepsy. However, as microglia 

number was reduced in the DG therefore, this may simply be due to the relatively 

small numbers of animals in the study and inter-animal variability. 

Although a direct effect of P2X7R inhibitor is possibly responsible for reduced 

gliosis, the decrease in microglia and astrocytes could also simply be an effect of a 

reduction in the number of spontaneous seizures; if seizures drive gliosis then 

reducing seizures should decrease gliosis. Experiments here cannot exclude this as a 

possibility and it is not possible to know whether glial changes are direct or indirect 

consequences of JNJ-47965567 administration. That said, seizure rates were lower 

in the vehicle group during ‘drug-on’ but returned to baseline afterwards. This is 

supportive of the change in gliosis being a direct effect of the drug. 
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These are not the first data to show effects of a seizure-modulating drug on gliosis. 

The administration of diazepam, ketamine, carbamazepine, or phenytoin decreased 

GFAP immunoreactivity in slices from chronic epileptic rats in the pilocarpine model 

(Cunha et al., 2009). A decrease in gliosis was also observed in the pilocarpine 

model of epilepsy after treatment with Carbamazepine (CBZ) (Capella and Lemos, 

2002). However, the scale of gliosis reduction here was far superior than in these 

studies. This indicates again that the P2X7R specifically and directly blocks gliosis. 

This property is novel and strongly supports the use of P2X7R antagonists as a new 

disease-modifying treatment in epilepsy. 

 

Finally, the reductions in gliosis and seizures in JNJ-47965567 mice could also be 

due to blocking the P2X7R on neurons. The present thesis includes multiple lines of 

evidence that the P2X7R is over-expressed on neurons. Thus, anti-seizure effects 

might be also due to direct effects of altered neurotransmitter release. In summary, 

this chapter provides evidence of the involvement of the P2X7R in the development 

of spontaneous seizures and in the underlying pathology of epilepsy, particularly 

the proliferation and activation of glial cells in the hippocampus. The present study 

supports the use of P2X7R inhibitors as novel therapeutics with disease-modifying 

effects to treat and prevent epilepsy.  
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Chapter VII – General discussion 

 

 

7.1 General discussion 

 

The main goal of the present thesis was to explore the role of the P2X7R in the 

generation and maintenance of spontaneous seizures and in their pathological 

sequelæ in epilepsy. There is a clinical need to find new therapeutic treatments that 

could reduce the occurrence of spontaneous seizures and modify the underlying 

pathology of epilepsy. Experiments here provide evidence of the expression, 

control and function of the P2X7R in the hippocampus in epilepsy and its 

contribution to the development of seizures in the disease. To that end, studies 

used a focal-onset SE mouse model that propagates seizures from the amygdala via 

the entorhinal cortex to the hippocampus (Ben-Ari et al., 1980). This model avoids 

direct neurotoxic effects on the hippocampus and the sometimes limited damage 

to that region when SE is evoked by systemic pilocarpine or KA (Sloviter et al., 

2007). Previous groups have studies the P2X7R in epilepsy but a major advance in 

here was the use of an EGFP-P2rx7 reporter mouse as an alternative tool for the 

exploration of cell-specific induction of the P2X7R in different brain regions affected 

in epilepsy. This approach avoids the reliance on insufficient selective P2X7R 

antibodies (Anderson and Nedergaard, 2006). Furthermore, a new selective brain 

stable P2X7R inhibitor was tested to determine the effects of blocking P2X7R on 

spontaneous seizures and on its possible contributions to the underlying 

pathophysiology of epilepsy. An exciting finding was that the administration of a 

P2X7R inhibitor reduced spontaneous seizures and that the inhibition persisted 

after the drug ’wash out’ period implying disease-modifying effects in epilepsy. In 

addition, gliosis was also reduced in animals treated with the P2X7R inhibitor. This 

property is novel and strongly supports the use of P2X7R antagonists as a new 

disease-modifying treatment in epilepsy. 
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7.1.1 Neocortical expression of P2X7R in epilepsy 

 

Pathological studies have revealed that prolonged or repeated seizures are 

associated with extrahippocampal damage in humans (Sankar et al., 2008). 

However, extrahippocampal neuron loss within cortical regions and amygdala have 

been reported in some (Du et al., 1993; Hudson et al., 1993; Pitkanen et al., 1998), 

but not all (Bothwell et al., 2001; Dawodu and Thom, 2005) clinical studies. If 

protection is needed for structures such as the neocortex after SE, then an 

important step is to identify the underlying cell and molecular mechanisms that 

provoke cell damage or excitotoxicity. The P2X7R has gained recent attention in 

epilepsy due to its enhanced expression after an initial insult and its possible 

involvement in the excitatory process (Rappold et al., 2006; Choi et al., 2012), along 

with its role in cell death (Le Feuvre et al., 2003).  

Experiments in Chapter III provide evidence of increased expression of the P2X7R in 

the neocortex after SE and in epilepsy in the intra-amygdala KA mouse model. 

Neurons were found to be the main cell population transcribing P2rx7 after SE, as 

revealed by studies in EGFP-reporter mice. In the epileptic mice, along with 

neurons, microglia also transcribed P2rx7, suggesting recruitment of further cell 

types with disease progression. This new approach was a major advance compared 

to previous studies. A constitutive expression of P2X7R was also observed in 

neurons from the cortical layers II – III in both control and KA animals. This was a 

novel finding suggesting constitutive functions of the receptor beyond the 

hippocampus. Interestingly, studies in Chapter V found constitutive expression in 

the cerebellum too. Studies have reported that neurons of the layer III receive a 

disproportional dense excitatory input from the limbic seizure circuit, and that 

excessive release of glutamate may preferentially be on the layer III neurons (Du et 

al., 1993). The presence of constitutive P2X7R expression in that cortical region may 

therefore regulate neuronal excitability in the normal brain. In addition, the 

massive induction of the P2X7R in the cortical layers V – VI in SE and epilepsy was 

an exciting finding, as cortical damage after SE was mainly observed in these layers.  
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The cells from cortical layers V – VI project principally into the thalamus, the 

claustrum and other regions of the cortex. Thus, since the cortex and the 

hippocampus have reciprocal connections, destruction of cortical neurons might 

affect neuronal communication between layers in the cortex and influence the loop 

activity in the hippocampal-entorhinal circuit affecting direct postsynaptic 

hippocampal targets (Ahissar and Kleinfeld, 2003; Thomson and Lamy, 2007). These 

alterations could contribute to an exacerbation of the hyperexcitability state and a 

functional organization of hippocampal epileptic discharges that may propagate the 

input to other regions of the brain contributing to the development of seizures 

(Pare et al., 1992; Bragin et al., 1997). 

In addition, the effects of the inhibition of P2X7R in the cortex after SE were 

explored in this study. A major finding was the reduction in cortical damage after SE 

in the layers V – VI in mice treated with P2X7R antagonist. Moreover, mice treated 

with the P2X7R antagonist also presented a strong reduction in seizures during SE. 

It is therefore tempting to speculate that overexcitation of and/or damage to 

neocortex, particularly to the neurons in the layers V and VI, may play a significant 

role in the development of seizures and during epileptogenesis process. These 

findings show the neocortex as an important site of P2X7R expression, further 

clarifying the cells involved in this process and extend the evidence that the P2X7R 

is a potential new target to protect against seizures and seizure-induce cell death.  

 

7.1.2 The role of P2X7R in epilepsy 

 

In recent years, increasing studies were conducted on the P2X7R in the brain, 

particularly on its role during inflammation and excitotoxicity (Alves et al., 2013). 

P2X7R activity has been associated with the release of the pro-inflammatory 

cytokine IL-1β, which plays an essential role in both the development and 

maintenance of the inflammatory process (Lister et al., 2007). The release of 

increased amounts of intracellular ATP during inflammation increases paracrine 
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purinergic signalling, thereby activating P2X7R. Its activation promotes the 

formation of large conductance channels associated with subsequent apoptosis 

(Elliott et al., 2009).   

Experiments in Chapter IV provided supporting evidence of the involvement of 

inflammation linked to P2X7R signalling in the intra-amygdala KA model of epilepsy. 

Up-regulated mRNA and protein expression of different pro-inflammatory cytokines 

were found in the hippocampus in epilepsy. Particularly, an enhanced microglia 

staining was detected in the CA3 hippocampal subfield which coincides with the 

area where injury occurs in the model (Mouri et al., 2008a). P2X7R has been 

proposed to regulate the release of IL-1β, mediating therefore inflammatory 

responses in the brain (Vezzani et al., 2011). Moreover, the release of IL-1β has 

been shown to have pro-convulsive effects promoting neuronal injury and gliosis 

(Allan et al., 2005). Therefore, this study shows evidence of the P2X7R activation in 

microglia and neurons in the hippocampus, which could contribute to the increase 

of a hyperexcitability state in the brain in epilepsy (Vezzani et al., 2011). 

Experiments here also performed the first comprehensive analysis of P2X receptor 

expression, finding the altered expression of various P2XRs in mice that developed 

epilepsy. These findings reveal a selective subfield-specific expression and 

upregulation of the P2XRs in the hippocampus. Particularly, an increased expression 

of the mRNA and protein of the P2X7R in the hippocampus during epilepsy are in 

agreement with previous studies where the receptor was seen upregulated in 

epilepsy (Dona et al., 2009). Moreover, P2rx7 mRNA was found upregulated 

particularly in neurons and some microglia in the hippocampus, as revealed using a 

P2rx7 mRNA reporter mouse in which GFP is expressed under the control of the 

P2rx7 promoter region.  

An unexpected finding was the dramatic increase of constitutive GFP fluorescence 

in the pyramidal neurons of the CA1 hippocampal subfield in epilepsy. This is the 

first study that shows such a large transformation in that area in epilepsy. The 

functional consequences of such an increase in P2X7R transcription in CA1 are 
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uncertain, and it is unclear where the input is coming from. Two different 

hypotheses were discussed in this study, the large transformation of the CA1 

subfield could be due to the alterations during epileptogenesis of the innervations 

from CA3, which are considered as the main input to CA1 and as effect could be 

contributing to increase excitability in CA1. On the other hand, the second 

hypothesis suggests an alternative network to the classic trisynaptic pathway, the 

temporoammonic pathway, where the inputs that arrive to the CA1 subfield come 

from the layer III of the entorhinal cortex, where they are originated. Therefore, the 

increase of the excitatory responses of CA1 is independent of CA3 (Avoli et al., 

2002). These two theories suggest that inputs to the CA1 area may transform the 

responses of CA1 pyramidal neurons from predominantly inhibitory to powerfully 

excitatory supplementing an efficacious reverberating loop that is well suited for 

sustaining seizure activity (Avoli, 2007). In addition, the GFP fluorescence in granule 

neurons of the DG was particularly intense in epilepsy, leading to believe that the 

granular staining seen in this study is likely coming from mossy fibers terminal 

where the receptor had been trafficked to the pre-synaptic membrane. Indeed, 

P2X7R has been reported to be expressed there, mediating glutamate release 

(Deuchars et al., 2001; Sperlagh et al., 2002).  

To support previous findings and to extend evidence of the involvement of the 

P2X7R in the disease, functional studies in Chapter V showed an increased 

activation of the receptor in the hippocampus in epilepsy. Patch clamp recordings 

revealed an enhanced P2X7R expression in GFP positive cells from the CA1 and DG 

regions. Moreover, microfluorometric calcium measurement of several 

synaptosome preparations from epileptic mice showed evidence of increased 

functional responses of the P2X7R in epilepsy. These are the first data to support 

functional changes in epilepsy. As mentioned before, these findings are in 

agreement with previous studies were P2X7R has been reported to be found pre- 

and post-synaptically (Pankratov et al., 1998; Papp et al., 2004a; Cho et al., 2010). 

Although P2X7R expression has been described in detail, the mechanisms 

controlling its transcription in epilepsy are unknown. The unique and selected 
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patterns of P2X7R in the brain suggest complex mechanisms regulating its 

expression. Studies in Chapter IV found a role for the Sp1 transcription factor in 

controlling P2X7R. Increased expression of Sp1 was observed in the hippocampus in 

SE and in epilepsy. To confirm these findings, Mithramycin A, a specific Sp1 inhibitor 

was used to explore P2X7R expression in the hippocampus in epilepsy. Treatment 

of mice with Mithramycin A decreased P2rx7 transcript levels; evidence of region-

specific regulation of P2X7R by Sp1 transcription factor in epilepsy. In addition, the 

transcript levels of the early-gene C-fos were also donwregulated, which indicates a 

decrease in neuronal activity. However, it is not clear if the reduction of the 

neuronal activity occurred due to the decrease of the P2X7R expression or because 

Mithramycin A might also have an anticonvulsant effect. 

Additionally, alternative mechanisms for the control and regulation of the P2X7R 

expression were considered in this study, including DNA methylation. However, 

results were not conclusive. Therefore, other mechanisms such as microRNAs or 

proteosome inhibition might be implicated in the regulation and control of the 

P2X7R expression in other regions of the hippocampus. Thus, new analysis of 

alternative control mechanisms should be considered for further studies of the 

receptor. 

Although these results expand our understanding of the expression and control of 

the P2X7R in the hippocampus in epilepsy and  its involvement in the ongoing 

inflammatory processes, further studies of alternative regulation mechanisms of 

the P2X7R are required that would help create a more complete understanding of 

the role of P2X7R in epilepsy. 

 

7.1.3 Need for novel, more effective AED for epilepsy treatment 

 

Antiepileptic drug (AED) therapy is the main treatment for the management of 

seizures in patients with epilepsy. Anticonvulsant activity can be obtained by 

modifying the bursting properties of neurons and by reducing synchronisation in 
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neuronal networks. The mechanisms of current anticonvulsant drug action include 

modulating voltage-dependent ion channels, enhancing synaptic inhibition by 

modulation of GABAergic receptors, and the inhibition of synaptic excitation 

blocking glutamate (Lingamaneni and Hemmings, 1999; Stefan and Feuerstein, 

2007). However, although current AEDs have shown promising effects in many 

epilepsy patients, most still have adverse side effects and a limited effect on the 

underlying pathology of epilepsy (Loscher and Schmidt, 2002). There remains a 

need to develop new AED with other mechanisms of action and disease-modifying 

effects. 

Experiments in Chapter VI provide evidence for the P2X7R as a novel target for the 

prevention of seizures in epilepsy. A new selective P2X7R inhibitor, JNJ-47965567, 

was tested in epileptic mice. A major advantage of this new compound was its high 

BBB permeability and its stability within the brain. This is the first time the anti-

epileptic effects of a P2X7R antagonist have been tested in experimental epilepsy. A 

major finding was that the administration of the P2X7R inhibitor produced not only 

a reduction in the number of seizures during the drug administration period, but 

also once drug treatment was completed seizures did not return, implying disease-

modifying effects. These results are encouraging and support the specific inhibition 

of P2X7R as an anti-epileptic and a disease modifying treatment in epilepsy. Thus, 

P2X7R might be a promising new therapeutic target. 

Gliosis has been implicated in epilepsy and P2X7R expression has been shown to be 

increased in microglia in epilepsy (Dona et al., 2009). The release of IL-1β from 

activated microglia and astrocytes has been shown to have pro-convulsive effects 

by reducing seizure thresholds and inflammatory effects promoting neuronal injury 

as well as gliosis (Allan et al., 2005). Therefore, since IL-1β is implicated in 

ictogenesis and epileptogenesis, there is a strong rationale for targeting the P2X7R 

to reduce seizures and neuroinflammation (Vezzani et al., 2011). This is the first 

study showing evidence of a decrease in microgliosis in the hippocampus of 

epileptic mice after the treatment with the P2X7R inhibitor, JNJ-47965567. 

Microglia activation has been reported to modulate neuronal activity and its 
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activation may induces a rapid increase of spontaneous excitatory postsynaptic 

currents (Pascual et al., 2012). Therefore, the modulation of microglia by P2X7R 

inhibition might affect the release of pro-inflammatory cytokines, decreasing 

therefore, its proliferation and the hyperexcitability state (Vezzani et al., 2008). In 

addition, the inhibition of the P2X7R expression in activated microglia for several 

days may provoke the return of microglia to a resting state therefore reducing its 

proliferation. Hence, these findings support a main role of P2X7R activation in 

microglia proliferation during seizures in epilepsy. 

Astrocytes proliferation was also found to be decreased in the hippocampus of the 

P2X7R inhibitor-treated epileptic animals. This could be due to an indirect effect of 

P2X7R inhibition on other cells such as microglia. For example, blocking microglia 

function reduces IL-1β release, which is a potent stimulant of astrogliosis. Indeed, 

the decrease in the number of astrocytes was less obvious than in microglia; in 

particular, no significant differences were observed in the DG hippocampal subfield. 

This result could be due to the relatively high constitutive expression of the P2X7R 

in this brain region (Engel et al., 2012b). These findings suggest that the constitutive 

P2X7R expression might need a longer administration or a higher amount of the 

P2X7R inhibitor to be blocked in the DG region in epilepsy. 

Nevertheless, the reduction in the number of spontaneous seizures due to a direct 

effect of the P2X7R inhibition might be responsible for the decrease in microglia 

and astrocytes proliferation. If gliosis is caused by the recurrence of seizures, then 

reducing seizures should decrease gliosis. However, results here show evidence of 

the change in gliosis as a direct effect of the drug. These results are in agreement 

with previous studies showing an effect of a seizure-modulating drug in gliosis. 

Studies using a pilocarpine model of epilepsy have shown a reduction in gliosis after 

the administration of different AEDs, such as phenytoin (Cunha et al., 2009) and 

CBZ (Capella and Lemos, 2002). However, the scale of reduction in gliosis observed 

in the direct inhibition of P2X7R was far superior than in previous studies with other 

AEDs. Therefore, it is tempting to assume that the P2X7R specifically and directly 

blocks gliosis. This property is novel and strongly supports the use of P2X7R 
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antagonists as a new disease-modifying treatment in epilepsy. Moreover, evidence 

of the overexpression of the P2X7R in neurons in the hippocampus in epilepsy has 

been shown in this thesis. Hence, an alteration in the neurotransmitter release due 

to an inhibition of the neuronal P2X7R might provoke an anti-seizure effect.  

 In summary, this thesis provides evidence for the involvement of the P2X7R in the 

development of spontaneous seizures and in the underlying pathology of epilepsy, 

particularly the proliferation and activation of glial cells in the hippocampus. The 

present study supports the use of P2X7R inhibitors as novel therapeutics with 

disease-modifying effects to treat and prevent epilepsy.  

 

7.2 Future work 

 

To advance the current work and direct P2X7R inhibition towards clinical uses, the 

following future studies are proposed: 

 

 The validation of the present work in another model of epilepsy. 

Considering the differences existing between animal models, translation of 

the present findings to another model would add confidence to this study. 

Our lab is currently testing the effects of a P2X7R inhibitor in other epilepsy 

models such as Pentylenetetrazol kindling model, which provokes brief 

seizures, and recently it is developing a new traumatic brain injury epilepsy 

model. The pilocarpine model could be also used as a model of epilepsy to 

confirm these findings. 

 Further studies with EGFP-P2X7R protein mice. The use of EGFP reporter 

animals is a sophisticated and useful tool to explore the localization and 

expression of the receptor. Our lab is currently working with a new 

transgenic mouse which expresses GFP attached to the P2X7R protein, 
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obtained from a collaboration with Annette Nicke, Munich, Germany. This 

could help with the controversy over P2X7R receptors in neurons and glia. 

 Correlation of P2X7R induction/expression with epilepsy development and 

seizure severity. Two photon microscopy technique brings the opportunity 

to correlate the increase of the GFP expressing cells over time with the 

development of spontaneous seizures during the latent period of epilepsy in 

the same animal. This way, an increase in the number of GFP positive cells 

could be associated to the increased number of spontaneous seizures. 

 Further studies on long-term effects of the JNJ-47965567. Does 

prolonged/sustained administration of JNJ-47965567 prevent spontaneous 

seizures? A longer period of dosing could be tested to investigate if long-

term spontaneous seizures could be completely reduced and if neuronal 

damage could be abolished. EEG telemetry could be used, allowing the 

continuous study for several months of recurrent spontaneous seizures. 

 Epileptogenesis. The administration of the JNJ-47965567 from the onset of 

SE and during the subsequent epileptogenic period during could be a 

possible target to prevent the development of spontaneous seizures and 

epilepsy. This could be used in clinical trials to prevent the development of 

epilepsy in patients after the first seizure onset. 

 The use of other antagonists. The recent development of specific 

antagonists offers a wide range of compounds capable of blocking this 

receptor. For example, A8084598 has been described as a potent P2X7R 

inhibitor. Additionally, the role of other P2X receptors and its involvement in 

epilepsy could be investigated in experimental models. 

 Identifying the P2X7R effectors and downstream events. We observed a 

direct involvement of P2X7R in the increase of IL-1β in the hippocampus in 

epilepsy. However, other mechanisms are likely involved. Fluorescence-

activated cell sorting (FACS) would be a useful technique for this matter, 

which would work by separating the GFP positive cells from non-positive 

cells. PCR, proteomics and array analyses on GFP-positive cells which 

express P2X7R induction could then be used for more specific analyses. 
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 Study the regulation of P2X7R. Although evidence for the transcriptional 

control of SP1 on P2X7R expression has been shown in this study, the 

identification of other mechanisms that control P2X7R regulation is still 

needed. Our lab is already working on targeting microRNA-22, a direct 

regulator of P2X7R expression, with the aim of altering P2X7R expression to 

treat/prevent seizures. Proteosome inhibition could also be an alternative 

mechanism for future studies. 

 

7.3 Conclusions 

 

This body of work represents the first characterisation of the expression of P2X7R 

by using a transgenic mouse model to identify cell-specific P2X7R induction and 

regulation of the P2X7R in the hippocampus in epilepsy and its involvement in the 

development of spontaneous seizures. Moreover, in this study we showed evidence 

of P2X7R mediating microglia activation and the release of the proepileptic 

inflammatory cytokines such as IL-1β, thus showing the contribution of this 

receptor in the inflammatory process. In agreement with this, the treatment with 

the P2X7R antagonist showed a reduction in microglia activation and in the number 

of seizures in epilepsy, suggesting therefore a contribution of the receptor in both, 

seizures occurrence and in the inflammation process. Spontaneous seizures are a 

serious common pathologic condition. Current AEDs available are partially 

ineffective for many TLE patients. Therefore, P2X7R antagonists provide seizure 

protection through ways that other AEDs do not. This work strengthens previous 

findings in TLE models about the contribution of the P2X7R in the generation and 

the maintenance of seizures. Therefore, the reduction of spontaneous seizures due 

to the inhibition of P2X7R strongly supports the use of P2X7R antagonists as a new 

target for developing novel therapeutical drugs for disease-modifying treatment in 

epilepsy.  
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