Mitochondrial and plasma membrane potential of cultured cerebellar neurons during glutamate-induced necrosis, apoptosis, and tolerance.

Manus W. Ward  
Royal College of Surgeons in Ireland

Heinrich Huber  
Royal College of Surgeons in Ireland

Petronela Weisová  
Royal College of Surgeons in Ireland

Heiko Düssmann  
Royal College of Surgeons in Ireland

David G. Nicholls  
Royal College of Surgeons in Ireland

See next page for additional authors

Citation

This Article is brought to you for free and open access by the Department of Physiology and Medical Physics at e-publications@RCSI. It has been accepted for inclusion in Physiology and Medical Physics Articles by an authorized administrator of e-publications@RCSI. For more information, please contact epubs@rcsi.ie.
Neurobiology of Disease

Mitochondrial and Plasma Membrane Potential of Cultured Cerebellar Neurons during Glutamate-Induced Necrosis, Apoptosis, and Tolerance

Manus W. Ward,'* Heinrich J. Huber,1,2* Petronela Weisová,1 Heiko Düßmann,1 David G. Nicholls,3 and Jochen H. M. Prehn1

1Department of Physiology and Medical Physics and RCSI Neuroscience Research Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland, 2Siemens Medical Division, Siemens Ireland, Dublin 2, Ireland, and 3Buck Institute for Age Research, Mitochondrial Physiology, Novato, California 94945

A failure of mitochondrial bioenergetics has been shown to be closely associated with the onset of apoptotic and necrotic neuronal injury. Here, we developed an automated computational model that interprets the single-cell fluorescence for tetramethylrhodamine methyl ester (TMRM) as a consequence of changes in either $\Delta \Psi_m$ or $\Delta \Psi_p$, thus allowing for the characterization of responses for populations of single cells and subsequent statistical analysis. Necrotic injury triggered by prolonged glutamate excitation resulted in a rapid monophasic or biphasic loss of $\Delta \Psi_m$ that was closely associated with a loss of $\Delta \Psi_p$ and a rapid decrease in neuronal NADPH and ATP levels. Delayed apoptotic injury, induced by transient glutamate excitation, resulted in a small, reversible decrease in TMRM fluorescence, followed by a sustained hyperpolarization of $\Delta \Psi_m$, as confirmed using the $\Delta \Psi_p$-sensitive anionic probe DiBAC$_3$(3). This hyperpolarization of $\Delta \Psi_m$ was closely associated with a significant increase in neuronal glucose uptake, NADPH availability, and ATP levels. Statistical analysis of the changes in $\Delta \Psi_m$ or $\Delta \Psi_p$ at a single-cell level revealed two major correlations; those neurons displaying a more pronounced depolarization of $\Delta \Psi_p$ during the initial phase of glutamate excitation entered apoptosis more rapidly, and neurons that displayed a more pronounced hyperpolarization of $\Delta \Psi_m$ after glutamate excitation survived longer. Indeed, those neurons that were tolerant to transient glutamate excitation (18%) showed the most significant increases in $\Delta \Psi_m$. Our results indicate that a hyperpolarization of $\Delta \Psi_m$ is associated with increased glucose uptake, NADPH availability, and survival responses during excitotoxic injury.

Key words: excitotoxicity; mitochondria; modeling; plasma and mitochondrial membrane potential; bioenergetics; necrosis

Introduction

Glutamate excitotoxicity is an important contributor to neuronal loss associated with ischemic, traumatic, and seizure-induced brain injury (Choi, 1994). Prolonged glutamate receptor overactivation results in a rapid necrotic neuronal injury that is known to be highly dependent on excessive Ca$^{2+}$ uptake leading to a loss of mitochondrial bioenergetics, ionic homeostasis, and cellular integrity (Choi, 1987; Tymianski et al., 1993a; Budd and Nicholls, 1996b; White and Reynolds, 1996; Stout et al., 1998; Vergun et al., 1999; Ward et al., 2000). Transient glutamate receptor activation, in contrast, can trigger a delayed apoptotic neuronal injury characterized by nuclear condensation, cell shrinkage, and a delayed collapse of mitochondrial bioenergetics and Ca$^{2+}$ homeostasis hours after the initial excitation (Ankarcrona et al., 1995; Budd et al., 2000; Luetjens et al., 2000; Ward et al., 2000, 2006). The sequestering of Ca$^{2+}$ within the mitochondrial matrix has been reported to play an integral role in excitotoxic injury (Budd and Nicholls, 1996b; Wang and Thayer, 1996; White and Reynolds, 1997; Stout et al., 1998; Brocard et al., 2001; Ward et al., 2005), resulting in an early impairment of mitochondrial ADP phosphorylation (Kushnareva et al., 2005).

The mitochondrial membrane potential ($\Delta \Psi_m$) is the central parameter controlling the accumulation of Ca$^{2+}$ within the mitochondrial matrix, respiration, and ATP synthesis (Nicholls and Ferguson, 1992; Nicholls and Budd, 2000; Nicholls, 2002). The fluorescent membrane-permeant cationic probe tetramethylrhodamine methyl ester (TMRM) has become one of the most frequently used probes in the analysis of $\Delta \Psi_m$ in intact cells because of its minimal phototoxicity, low photobleaching, and the ability to use it in both a quenched (aggregated probe) and non-quenched (no aggregation of probe) mode (Ehrenberg et al., 1988; Nicholls and Ward, 2000; Buckman et al., 2001; Gerencser and Adam-Vizi, 2005). Previously, we have successfully used TMRM in the quenched mode to monitor mitochondrial function during glutamate-induced injury in cerebellar granule neurons (Ward et al., 2000) identifying a sensitivity of TMRM to changes in $\Delta \Psi_m$ and the plasma membrane potential ($\Delta \Psi_p$). Indeed, the relative contribution of key changes in $\Delta \Psi_m$ and $\Delta \Psi_p$
after glutamate excitation have previously been difficult to define (Ankarcrona et al., 1995; Khodoriev et al., 1996; White and Reynolds, 1996; Kiedrowski, 1998; Prehn, 1998; Stout et al., 1998; Keelan et al., 1999; Nicholls and Ward, 2000). In this study, we set out to investigate the complex changes that occur at the $\Delta \Psi_m$ and $\Delta \Psi_p$ level in relation to changes in neuronal metabolism and define how alterations in these parameters correlate with neuronal injury and survival after glutamate excitation. We have expanded on a computational model for interpreting whole-cell TMRM fluorescence (Ward et al., 2000; Nicholls, 2006) allowing for the rapid, automated, and impartial assessment of changes in $\Delta \Psi_m$ and $\Delta \Psi_p$ at a single-cell level and subsequent statistical analysis. From this, we have identified significant alterations in $\Delta \Psi_m$ and $\Delta \Psi_p$ that are paralleled with key modifications to neuronal metabolism that directly relate to neuronal outcome (neocrosis, apoptosis, and tolerance) after glutamate excitation.

Materials and Methods

Preparation of primary cerebellar granule neurons. Cerebellar granule neurons were prepared as described previously (Ward et al., 2000) with minor modifications. Cerebellum from 7–12-day-old Wistar rats of both sexes were disected and pooled. The tissue was placed in 20 ml of filter sterilized PBS supplemented with 0.25 mg/ml trypsin and incubated at 37°C for 20 min. Trypsinization was terminated by the addition of an equal volume of filter-sterilized PBS supplemented with 0.05 mg/ml soybean trypsin inhibitor, 3 ml MgSO4, and 30 U/ml DNase I. The neurons were then triturated, and the resulting neurons were resuspended in supplemented culture medium. Cells were then plated on poly-L-lysine-coated glass coverslips, glass Willco (Amsterdam, The Netherlands) dishes, 6-well plates, and 24-well plates at 1 x 10^6 cells per milliliter and maintained at 37°C in a humidified atmosphere of 5% CO2/95% air.

Confocal microscopy. Cerebellar granule neurons on Wilco dishes were loaded with TMRM (30 nM) only or coloaded with Fluoro-AM (3 μM) for 30 min at 37°C (in the dark) in experimental buffer [containing (in mM) 120 NaCl, 3.5 KCl, 0.4 KH2PO4, 20 2-(2-hydroxy-1,1-bis(hydroxymethyl)ethyl)amino]ethanesulfonic acid N-[Tris(hydroxymethyl)-methyl]-2-aminoethanosulfonic acid (Tes), 5 NaHCO3, 1.2 Na2SO4, 1.2 CaCl2, 1.2 MgCl2, and 15 glucose, pH 7.4]; the Willco dishes (in mM) 120 NaCl, 3.5 KCl, 0.4 KH2PO4, 20 2-(2-hydroxy-1,1-bis(hydroxymethyl)ethyl)amino]ethanesulfonic acid N-[Tris(hydroxymethyl)-methyl]-2-aminoethanosulfonic acid (Tes), 5 NaHCO3, 1.2 Na2SO4, 1.2 CaCl2, 1.2 MgCl2, and 15 glucose, pH 7.4]. The Wilco dishes with cells were washed in fresh medium after loading before being mounted in a nonperfusion (37°C) holder and placed on the stage of an LSM 510 Meta Zeiss (Oberkochen, Germany) confocal microscope. No MgCl2 was present in buffers for experiments that involved the addition of glutamate. For glutamate-induced apoptosis, neurons were exposed to glutamate and glycine (100 and 10 μM) for 5 min, and (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclopehten-5,10-imine maleate (MK-801; 10 μM; Sigma) and 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzoquinoxaline-7-sulfonamide (NBQX; 10 μM; Sigma) were added to block glutamate receptor activation. In the model of glutamate-induced necrosis, MK-801 and NBQX were not added. Fluoro-AM was excited at 488 nm with an argon laser (1%), and the emission was collected through a 505–550 nm barrier filter; TMRM was excited at 543 nm with a helium–neon laser (3%), and the emission was collected through a 560 nm long-pass filter. Images were collected at 15 s intervals during glutamate excitation and every 5 min during the rest of the experiment, and the resulting fluorescent images were processed using MetaMorph Software version 7.1, release 3 (Molecular Devices, Berkshire, UK).

DiBAC4(3) is a fluorescent probe that has been successfully used to characterize changes in $\Delta \Psi_p$. (Freedman and Novak, 1989). Here, cerebellar granule neurons were incubated with an experimetal buffer containing 1 μM DiBAC4(3) for 30 min at 37°C. A concentration of 1 μM DiBAC4(3) was also present in the experimental buffer. DiBAC4(3) is a bis-barbituric acid oxoion compound that partitions into the membrane as a function of membrane potential. Hyperpolarization causes extirusion of the dye and decreased fluorescence, whereas depolarization causes enhanced fluorescence. Fluorescence was monitored with an LSM 510 (Zeiss) confocal microscope. The probe was excited at 488 nm with an argon laser (1%), and the emission was collected through a 530–600 nm barrier filter. Images were collected at 15 s intervals during additions [glutamate, oligomycin, carbonyl cyanide p-(trifluoromethoxy) phenyl hydrazone (FCCP)] and every 2 min throughout the rest of the experiment. The resulting fluorescent images were processed using MetaMorph software.

Computational modeling. We have used MATLAB software (version 7.0; Mathworks, Cambridge, UK) for the creation of an automated computational model for the analysis of single-cell fluorescence responses for monovalent cationic probes [TMRM, tetramethylrhodamine ethyl ester (TMRE), rhodamine-123], in populations of cells providing rapid predictive output on changes in $\Delta \Psi_p$ and $\Delta \Psi_m$ for large data sets. Previous models have been restricted by the manual fitting of parameters, limited flexibility within the parameters, and low throughput of data sets. This model provides automated output for large data sets with minimal parameter fitting.

This model, as in previous models (Ward et al., 2000; Nicholls, 2006), was based on the Nerstian equilibration of a generic membrane-permeant monovalent cation $c^+$ (TMRM, TMRE, rhodamine-123). The equilibration concentration for free $c^+$ in the extracellular medium, cytosol, and mitochondrial matrix at 37°C results in the relationships described below:

$$c^+_{\text{[matrix]}} = c^+_{\text{[cytoplasm]}} \times 10^{-6} \Delta \psi_m \text{[61.5]}$$
$$c^+_{\text{[cytoplasm]}} = c^+_{\text{[medium]}} \times 10^{-\Delta \psi_p \text{[61.5]}}$$
$$c^+_{\text{[medium]}} = c^+_{\text{[equilibrium]}} = c^+_{\text{[quench]}} \times k_{\text{kinetic}}$$

where $\Delta \psi_m$ and $\Delta \psi_p$ are the plasma and mitochondrial membrane potentials and the divisor 61.5 is the value (in millivolts) for RT/F/ log2 at 37°C. Re-equilibration of the cytosolic and extracellular compartments attributable to changes in the potentials of $\Delta \psi_m$ and $\Delta \psi_p$ are taken into account by assuming a first-order flux between the extracellular medium and the cytosol:

$$f_{\text{[cytoplasm]}} = \left( c^+_{\text{[cytoplasm,actual]}} - c^+_{\text{[cytoplasm,quench]}} \right) k_{\text{kinetic}}$$

where $k_{\text{kinetic}}$ is a constant proportional to the permeability of the $c^+$ probe across the plasma membrane. The equilibration effects between the mitochondria and the cytosol are assumed as immediate. From this, we obtain the whole-cell fluorescence $f_{\text{[cell]}}$ as the sum of the cytosolic and mitochondrial matrix signals by taking into consideration the distinct behavior attributable to quenching of the fluorescence signal within the mitochondria with the quench threshold concentration $c^+_{\text{[quench]}}$:

$$f_{\text{[cell]}} = q \times c^+_{\text{[cytoplasm]}} V_{\text{[cyto]}} + f_{\text{[cell]}} = q \times c^+_{\text{[quench]}} V_{\text{[cyto]}} + f_{\text{[cell]}} = q \times c^+_{\text{[quench]}} V_{\text{[cyto]}}$$

$$f_{\text{[cell]}} = q \times c^+_{\text{[cytoplasm]}} V_{\text{[cyto]}} + q \times c^+_{\text{[quench]}} V_{\text{[mito]}}$$

Here, $q$ is the quantum yield of the probe with $V_{\text{[cyto]}}$ and $V_{\text{[mito]}}$ denoting the cytosolic and mitochondrial volume.

To provide a more accurate model, we re-evaluated the mitochondrial volume ($V_{\text{[mito]}}$) within the neurons as well as the rate constant $k_{\text{mito}}$ for TMRM (see Fig. 2) and implemented the model into MATLAB. A Newton routine for fitting the membrane potentials to the experimental fluorescence traces was implemented to avoid the need and bias of manual parameter fitting. The mitochondrial volume within the neurons (6.2 ± 0.8% SEM) was determined by using the Zeiss LSM 510 confocal microscope to create high-resolution z-stacks (80 x 0.2 μm steps, 0.8 μm optical slice) of TMRM-loaded neurons (see Fig. 2A). The rate constant...
**Figure 1.** Potential models and fitting parameters for MATLAB-based analysis. The figure depicts the assumed functional behavior of ΔΨ_p, (solid line) and ΔΨ_m (dashed line) that is used for fitting the TMRR fluorescence responses as taken from biological assumptions described in Materials and Methods. Parameters subject to fitting (potential values, decay constants) are indicated by arrows. A, Potential model for the apoptotic cells showing hyperpolarization of ΔΨ_p only (i) and showing hyperpolarization of ΔΨ_m with a secondary collapse (ii). B, Necrotic model; monophasic response. C, Necrotic model; biphasic response. a.u., Arbitrary units; hyp, hyperpolarization; max, maximum; dep init, initial depolarization; dep final, final depolarization; inc, increase; dep, depolarization; Glut, glutamate; DCD, delayed calcium deregulation.

**Epi-fluorescence NADPH microscopy:** Seven-to-8-d-old cerebellar granule neurons on Wilco dishes were loaded with TMRR (30 nM) for 30 min at 37°C (in the dark), in experimental buffer. The Wilco dishes with cells were washed in fresh medium after loading before being mounted in a nonperfusion (37°C) holder and placed on the stage of a Zeiss Axiosvert 200M microscope. During experiments, cells were treated as described above (see Confocal microscopy). NADPH auto fluorescence as well as TMRM fluorescence was observed using an Axiosview 200M inverted microscope equipped with a 63×, 1.4 numerical aperture oil-immersion objective (Zeiss), dichroic beam splitters, and filter wheels in the excitation and emission light path containing the appropriate filter sets (NADPH: excitation, 375±22 nm; emission, 448±32 nm; TMRR: excitation, 530±21 nm; emission, 592±22 nm; filters and dichroic mirrors were made by Semrock, Rochester, NY). Emission and bright-field images were recorded using a back-illuminated, cooled EM CCD camera (Ixon BV 887-DCC; Andor, Belfast, UK). The imaging setup was controlled by MetaMorph software.

**ATP luciferase assays:** Cerebellar granule neurons were maintained on poly-d-lysine (5 μg/ml)-coated 24-well plates for 7–8 d before use. The culturing medium was replaced with an experimental buffer (in mM: 120 NaCl, 3.5 KCl, 0.4 KH2PO4, 20 TES, 5 NaHCO3, 1.2 Na2SO4, 1.2 CaCl2, and 15 glucose, pH 7.4), and the neurons were excited with glutamate/glycine for 5 min or continuously (100 and 10 μM) and lysed at the times indicated. In separate experiments, cerebellar granule neurons were exposed to combinations of oligomycin (2 μg/ml), FCCP (2 μM), and MK-801 (10 μM) and maintained for 30 min before being lysed. The neurons were lysed using a hypotonic lysis buffer (Tris-acetate buffer, pH 7.75). Fifty microliters of the sample and 50 μl of the luciferin–luciferase reaction kit (ENLITEN ATP Assay System Bioluminescence Detection kit; Promega, Southampton, UK) for ATP were reacted to quantify ATP content. The amount of ATP was determined by a concentration standard curve, and ATP content values were normalized according to the protein concentration for each sample (moles ATP/μg protein).
Figure 2. Characterization of TMRM fluorescence in cerebellar granule neurons with high-resolution single-cell confocal microscopy. A, Cerebellar granule neurons were loaded with 30 nM TMRM, and the mitochondrial volume (17.6 ± 1.5 μm³; 6.2 ± 0.8%; n = 9) was determined by measuring the volume of individual mitochondria within the neurons after the acquisition of high-resolution z-stacks with an LSM 510 confocal microscope. B, D, Neurons loaded with 100 nM TMRM (B) and 30 nM TMRM (D) were exposed to FCCP (2 μM) in the presence of oligomycin (2 μg/ml) and monitored over a 60 min period. C, E, Using MATLAB software, the traces in B and D were modeled, and the changes in both ΔΨₚ and ΔΨᵣ were established for these control experiments (all experiments were performed 3 times in different cultures). F, Cerebellar granule neurons were loaded with the ΔΨᵣ-sensitive probe DiBAC₄(3) (1 μM) and exposed to oligomycin (2 μg/ml), followed by FCCP (2 μM). A rapid increase in fluorescence (depolarization of ΔΨᵣ) was associated with the addition of FCCP (traces are representative of those obtained from 3 separate experiments). G, Representative traces for modeled changes in ΔΨᵣ (A) for neurons exposed to oligomycin (2 μg/ml) and FCCP (2 μM). Oligo, Oligomycin.

Glucose uptake assay. Cerebellar granule neurons were maintained on poly-D-lysine (5 μg/ml)-coated 96-well plates for 7–8 d before use. The culturing medium was then replaced with an experimental buffer (in mM: 120 NaCl, 3.5 KCl, 0.4 KH₂PO₄, 20 TES, 5 NaHCO₃, 1.2 Na₂SO₄, 1.2 CaCl₂, and 1 glucose; pH 7.4) minus MgCl₂. The cerebellar granule neurons were treated with glutamate/glycine (100 and 10 μM) for 10 min (37°C) or exposed to sham conditions (experimental buffer). The excitation buffer was replaced with buffer minus glucose and containing 100 μM 2-deoxyglucose and 3H-2-deoxyglucose. 3H-2-deoxyglucose is taken up by neurons through the glucose transporters; however, it is not fully metabolized by the neuron and is retained within the cell. The neurons were maintained for 20 min in the experimental buffer containing the 3H-2-deoxyglucose; the buffer was then removed, and the neurons were washed twice with cold buffer minus glucose before the addition of 100 μl of scintillation fluid. The plates were left for 20 min on ice before reading on a Matrix-96 beta counter (Packard, Grove, IL). All conditions were repeated six times per experiment, and the same experiment was performed in at least three different cultures.

Statistics. Data are given as means ± SEM. For statistical comparison, one-way ANOVA followed by Tukey’s test were used. p values <0.05 were considered to be statistically significant. Data for ΔΨₚ, ΔΨᵣ, and the onset of neuronal injury were plotted using Origin 7 software (OriginLab, Northampton, MA) a linear regression was preformed on the data, and the R² value was calculated for each data set.

Results
Characterization and computational modeling of whole-cell TMRM fluorescence in cerebellar granule neurons
Cellular TMRM fluorescence is not only highly dependent on the changes in both ΔΨₚ and ΔΨᵣ but is also directly related to the total mitochondrial volume within the cell (Ward et al., 2000; Dussmann et al., 2003; Nicholls, 2006). Therefore, a stringent determination of the mitochondrial volume was performed in cerebellar granule neurons. High-resolution z-stacks with 0.2 μm steps were taken of three fields of neurons, and the cellular volume (296.9 ± 32.9 μm³) and the mitochondrial volume (17.6 ± 1.5 μm³) were determined for each neuron (Fig. 2A). The mitochondrial volume (6.2 ± 0.8%) was found to be larger than that described previously (Ward et al., 2000; Nicholls, 2006).

To determine the rate constant (k₉0) for the redistribution of TMRM, several control experiments were performed (Fig. 2B, C). The protonophore FCCP (2 μM) was added to neurons loaded with TMRM in the presence of oligomycin (2 μg/ml) to uncouple ΔΨᵣ and the fluorescent signals were monitored for neurons in both the quenched (Fig. 2B) and nonquenched (Fig. 2D) mode. From the redistribution of the probe after the addition of FCCP, we established a kinetic constant for the redistribution of TMRM of 0.008 s⁻¹.

The MATLAB-based computational model was used to interpret the changes in TMRM fluorescence in response to the addition of FCCP/oligomycin and provide output on changes in ΔΨᵣ and ΔΨₚ. Surprisingly, in the modeled traces (Fig. 2C, E) the expected rapid collapse in ΔΨᵣ after the addition of FCCP was also closely paralleled with a rapid collapse of ΔΨₚ. To validate these findings, we
used the $\Delta \Psi_m$-sensitive fluorescent probe DiBAC$_2$(3) to monitor changes in $\Delta \Psi_m$ after the addition of oligomycin and FCCP (Fig. 2 F, G). A rapid and prolonged increase in DiBAC$_2$(3) fluorescence after the addition of FCCP that reflected a substantial depolarization of $\Delta \Psi_m$ (Fig. 2 F, G) was observed.

In addition to monitoring TMRM and DiBAC$_2$(3) fluorescent responses, changes in $Ca^{2+}$ dynamics (Fluo-4) and neuronal ATP levels were monitored within the neurons after the addition of FCCP in the presence of oligomycin (Fig. 3). A rapid collapse of $Ca^{2+}$ homeostasis was identified within the neurons after exposure to the protonophore FCCP (Fig. 3A). The collapse in $Ca^{2+}$ homeostasis (Fig. 3A) after the addition of FCCP was completely blocked by the NMDA antagonist MK-801 (Fig. 3B). The addition of oligomycin alone had no significant impact on neuronal ATP levels (Fig. 3); however, oligomycin plus FCCP resulted in a significant decrease (* $p < 0.01$) in ATP levels that was blocked by the presence of the NMDA antagonist MK-801 (Fig. 3C). These results suggest that any $Ca^{2+}$ entering the neuron is the direct result of NMDA receptor overactivation attributable to glutamate release from the presynaptic terminals. Because the ATP synthase inhibitor oligomycin was present throughout (Fig. 3), energy restrictions alone could not account for the release of glutamate. This is intriguing in that it suggests presynaptic, polarized mitochondria play a key role in the regulation of glutamate within the synapse.

Characterization of $\Delta \Psi_m$ and $\Delta \Psi_p$ during necrotic cell injury induced by prolonged glutamate excitation in cerebellar granule neurons

We have previously characterized a model of excitotoxic necrosis in cerebellar granule neurons induced by prolonged glutamate excitation (Castilho et al., 1998, 1999; Ward et al., 2000). In agreement with previous studies, we identified two major subgroups of neurons after prolonged glutamate excitation: (1) neurons that underwent a rapid collapse of $\Delta \Psi_m$ (5–20 min) (Fig. 4A, B) with monophasic loss (33.1%) of TMRM fluorescence, rapid loss of $Ca^{2+}$ homeostasis, and neuronal swelling; and (2) neurons that underwent a delayed neuronal injury (15 min to 4 h) (Fig. 4A, B) with a biphasic drop (63.4%) in TMRM fluorescence, a delayed loss of $Ca^{2+}$ homeostasis, neuronal swelling, and early membrane lysis (Ward et al., 2000; Ward et al., 2005).

From the data obtained (Fig. 4), we used the MATLAB-based computational model (Fig. 1 B, C) for the high throughput assessment of the TMRM fluorescence responses to define potential changes in $\Delta \Psi_m$ and $\Delta \Psi_p$. Representative traces from neurons exposed to glutamate are shown from separate (Fig. 5A, C, E) experiments and modeled output traces for $\Delta \Psi_m$ and $\Delta \Psi_p$ determined for each (Fig. 5B, D, F): (1) neurons that entered a rapid necrotic cell death with a monophasic decrease in $\Delta \Psi_m$ and $\Delta \Psi_p$ after glutamate excitation (Fig. 5A) and (2) neurons that entered a delayed necrotic injury (Fig. 5C, E) with a biphasic decrease in $\Delta \Psi_m$ and $\Delta \Psi_p$. The rate at which neurons entered the second phase of injury varied considerably (15 min to 4 h) between neurons and cultures; however, all neurons entered a necrotic-like injury with a rapid swelling of the neuron and loss of cellular integrity shortly after the collapse of $\Delta \Psi_m$.

To validate that the modeled $\Delta \Psi_p$ responses above (Fig. 5 B, D, F) were accurate, we directly monitored $\Delta \Psi_p$ with the plasma membrane-sensitive probe DiBAC$_2$(3) (Fig. 4D). Again, two major groups of neurons were identified: neurons that underwent a rapid collapse of $\Delta \Psi_p$ (Fig. 4D, i) and neurons that underwent a secondary loss of $\Delta \Psi_p$ (Fig. 4D, ii). When the DiBAC$_2$(3) responses were modeled using the MATLAB software...
and the predictive changes in $\Delta \Psi_p$ were calculated (Fig. 4E), the values for $\Delta \Psi_p$ were found to be similar to those predicted from the modeled TMRM responses alone.

**Hyperpolarization of $\Delta \Psi_m$ in apoptotic neurons after transient glutamate receptor excitation**

Transient excitotoxicity results in a delayed neuronal injury that has mitochondrial dysfunction intrinsically linked with injury onset (Lankiewicz et al., 2000; Luetjens et al., 2000; Ward et al., 2000, 2006). Here, cerebellar granule neurons were stimulated for 5 min with glutamate/glycine, allowed to recover, and monitored over a 24 h period (Ward et al., 2006). After transient glutamate excitation, only 2.9% of the neurons underwent rapid necrotic injury with an early loss of $\Delta \Psi_m$ ($46.2 \pm 16.7$ min), neuronal swelling, and early membrane lysis. However, the majority of neurons monitored (78.8%) displayed a delayed loss of $\Delta \Psi_m$ ($11.8 \pm 0.8$ h), cell shrinkage, and condensation of the nucleus within a 24 h period. An additional 18.2% survived this injury and retained a hyperpolarized $\Delta \Psi_m$ and normal cellular morphology for at least 24 h (Fig. 6A,B).

The MATLAB-based model was used (Fig. 1A) to interpret the changes in TMRM fluorescence for populations of individual neurons and provide output on changes in $\Delta \Psi_m$ and $\Delta \Psi_p$ during and after transient glutamate excitation. In the majority of neurons (97.1%), a transient depolarization of $\Delta \Psi_p$ was associated with glutamate receptor overactivation with values for $\Delta \Psi_p$ returning to prestimulation levels within a relatively short (5 to 15 min) period of time (Fig. 7B,D,F,H). Interestingly, the values for $\Delta \Psi_m$ after glutamate excitation were found to be significantly higher ($p < 0.001$) than before glutamate excitation (Fig. 7B,D,F,H). Similar to the previous experiments, the output on the changes in $\Delta \Psi_m$ and $\Delta \Psi_p$ deduced from the computational analysis of the TMRM responses were validated with the $\Delta \Psi_p$-sensitive probe DiBAC$_{3}(3)$. An increase in DiBAC$_{3}(3)$ fluorescence was associated with the initial glutamate excitation ($\Delta \Psi_p$ depolarization) (Fig. 6D); after inhibition of glutamate receptor overactivation, the fluorescence recovered to prestimulation levels with no hyperpolarization of the $\Delta \Psi_p$ (lower fluorescence than baseline) identified (Fig. 6D). Interestingly, when the DiBAC$_{3}(3)$ responses were calculated using MATLAB software and the predictive changes in $\Delta \Psi_p$ were calculated (Fig. 6E), the values for $\Delta \Psi_p$ were again found to be similar to those predicted from the modeled TMRM data (Fig. 7B,D,F,G). What is most significant from these results is the fact that the increase in TMRM fluorescence after glutamate excita-
tion (Figs. 6, 7) is almost entirely attributable to a hyperpolarization of \( \Delta \Psi_m \) with little or no contribution from changes in \( \Delta \Psi_p \) (Fig. 6D, E).

**Hyperpolarization of \( \Delta \Psi_m \) is a predictor of survival time and tolerance to transient glutamate receptor excitation**

Statistical analysis of the MATLAB-based computational model was performed to investigate whether changes in \( \Delta \Psi_m \) and \( \Delta \Psi_p \) after transient glutamate receptor overactivation could predict downstream injury or survival. Two major phases of change were determined during transient glutamate excitation: (1) the extent of the initial depolarization of \( \Delta \Psi_p \) during the glutamate excitation phase and (2) the hyperpolarization of \( \Delta \Psi_m \) after the excitation phase (Figs. 6, 7). When the single-cell data from a number of neuronal populations were characterized, correlations between the onset of injury (collapse of \( \Delta \Psi_m \) within the neuron) and changes in \( \Delta \Psi_m \) and \( \Delta \Psi_p \) could be established. A strong correlation was identified \((r^2 = 0.28; n = 5 \) neuronal populations\) between the extent of the initial depolarization and the onset of neuronal injury in individual population subsets (Fig. 7I), with a large depolarization of \( \Delta \Psi_p \) during the initial glutamate excitation phase associated with a more rapid onset of injury. The second and possibly more interesting correlation defined \((r^2 = 0.23; n = 5 \) neuronal populations\) is that between the extent of hyperpolarization after transient excitation within a population of cells and the onset of injury (Fig. 7I), with those neurons having a more pronounced hyperpolarization of \( \Delta \Psi_m \) during the recovery phase surviving longer. On further analysis of the TMRM fluorescence for those neurons that tolerated the glutamate insult, we identified that those neurons tolerant to transient glutamate excitation had a significantly \((p < 0.001) \) higher TMRM fluorescence \((202.8 \pm 19.2; n = 31) \) than neurons that underwent apoptosis (Fig. 6C). These data suggest that the extent of the hyperpolarization of \( \Delta \Psi_m \) \((\text{increase in TMRM fluorescence}) \) after transient glutamate excitation is more closely associated with neuronal survival rather than injury.

**Enhanced glucose uptake and NADPH availability in response to transient glutamate excitation**

Because an increased \( \Delta \Psi_m \) is highly suggestive of alterations in neuronal metabolism, we investigated how glucose uptake, NADPH production, and neuronal ATP levels may be altered in relation to glutamate excitation. Prolonged glutamate excitation \((\text{dashed line}) \) resulted in a significant \((p < 0.01) \) rapid and continuous decrease in both neuronal NADPH (Fig. 8A, B) and ATP (Fig. 8C) levels within the neurons. However, transient glutamate excitation \((\text{solid line}) \) resulted in a transient decrease in both neuronal NADPH and ATP levels that was followed by a significant \((p < 0.01) \) and sustained increase in both \((\text{Fig. 8A, B}) \) NADPH and ATP. This increase in NAHPD and ATP levels was also coupled to a significant increase in glucose uptake \((\text{Fig. 8D}) \) as measured with \(^3\text{H}-2\)-deoxyglucose. These alterations in neuronal metabolism, in particular the NADPH levels that could be determined in real time, closely paralleled the hyperpolarization of \( \Delta \Psi_m \) identified after transient glutamate excitation (Figs. 6B, 7).

**Discussion**

**Computational modeling of \( \Delta \Psi_m \) and \( \Delta \Psi_p \) from TMRM fluorescent traces**

Cationic fluorescent probes \((\text{TMRM, TMRE, rhodamine-123, JC-1}) \) are an invaluable tool for monitoring mitochondrial func-
and apoptotic neurons 120 min after transient glutamate excitation; prolonged glutamate excitation. Two major subgroups are shown: traces that show a secondary collapse of after glutamate) from a representative experiment.

Differential interference contrast (DIC) and TMRM fluorescent images were chosen at selected time points (0 min, 2 h, and 14 h exposure levels (average response dark trace) after the addition of glutamate (traces are representative of those obtained from 3 separate experiments).

Cerebellar granule neurons plated on Willco dishes were loaded with 30 nM TMRM and exposed to glutamate/glycine (100 μM) for 5 min. TMRM fluorescence was then monitored over time, and images were taken at 5 min intervals. A, Differential interference contrast (DIC) and TMRM fluorescent images were chosen at selected time points (0 min, 2 h, and 14 h after glutamate) from a representative experiment. B, Representative traces for whole-cell TMRM fluorescence in neurons during prolonged glutamate excitation. Two major subgroups are shown: traces that show a secondary collapse of ΔΨm downstream of excitation (i) and traces that show a collapse of ΔΨm within 24 h (ii). C, Whole-cell TMRM fluorescence in control neurons after 120 min and neurons 120 min after glutamate excitation. p < 0.01, difference between TMRM fluorescence for control neurons and apoptotic neurons 120 min after transient glutamate excitation; p < 0.001 difference between TMRM fluorescence for apoptotic neurons 120 min after transient excitation compared with neurons that survive for >24 h after glutamate excitation (control, n = 39; apoptotic, n = 134; live, n = 31). D, Cerebellar granule neurons were loaded with the ΔΨm-sensitive probe DiBAC2(3) (1 μM) and transiently (5 min) exposed to glutamate/glycine (100 μM/10 μM). Fluorescence recovers close to pre-exposure levels (average response dark trace) after the addition of glutamate (traces are representative of those obtained from 3 separate experiments). E, Representative traces for modeled changes in ΔΨm for neurons transiently exposed to glutamate.

Figure 6. Transient glutamate excitation results in a hyperpolarization ΔΨm, and a late apoptotic injury in cerebellar granule neurons. Cerebellar granule neurons plated on Willco dishes were loaded with 30 nM TMRM and exposed to glutamate/glycine (100 μM/10 μM) for 5 min. TMRM fluorescence was then monitored over time, and images were taken at 5 min intervals. A, Differential interference contrast (DIC) and TMRM fluorescent images were chosen at selected time points (0 min, 2 h, and 14 h after glutamate) from a representative experiment. B, Representative traces for whole-cell TMRM fluorescence in neurons during prolonged glutamate excitation. Two major subgroups are shown: traces that show a secondary collapse of ΔΨm downstream of excitation (i) and traces that show a collapse of ΔΨm within 24 h (ii). C, Whole-cell TMRM fluorescence in control neurons after 120 min and neurons 120 min after glutamate excitation. p < 0.01, difference between TMRM fluorescence for control neurons and apoptotic neurons 120 min after transient glutamate excitation; p < 0.001 difference between TMRM fluorescence for apoptotic neurons 120 min after transient excitation compared with neurons that survive for >24 h after glutamate excitation (control, n = 39; apoptotic, n = 134; live, n = 31). D, Cerebellar granule neurons were loaded with the ΔΨm-sensitive probe DiBAC2(3) (1 μM) and transiently (5 min) exposed to glutamate/glycine (100 μM/10 μM). Fluorescence recovers close to pre-exposure levels (average response dark trace) after the addition of glutamate (traces are representative of those obtained from 3 separate experiments). E, Representative traces for modeled changes in ΔΨm for neurons transiently exposed to glutamate.

Effects of “mitochondrial” toxins on ΔΨm, Ca2+ uptake, and glutamate release

In control experiments (Fig. 3), a combination of the ATP synthase inhibitor oligomycin and the protonophore FCCP were used to collapse ΔΨm in neurons, a technique routinely used to nullify mitochondrial function within neurons (Stout et al., 1998; Ward et al., 2005). The addition of oligomycin alone resulted in only minor changes in ΔΨm and neuronal ATP levels; however, the addition of FCCP resulted in the expected collapse of ΔΨm that was coupled with an unexpected decrease in ΔΨm, loss of Ca2+ homeostasis, and a significant decrease in neuronal ATP levels. Because the addition of the NMDA receptor antagonist MK-801 blocked these events, it implies that a depolarization of synaptic mitochondria was sufficient to induce glutamate release. Presynaptic mitochondria have a functional role in the regulation of Ca2+ (Yang et al., 2003; Brown et al., 2006; Ly and Verstreken, 2006; Mironov and Symonchuk, 2006) within synaptic vesicles; indeed, recent studies have shown that the endoplasmic reticulum (ER) and mitochondria bidirectionally exchange Ca2+ within the synapse and that Ca2+ released from the ER or mitochondria is sufficient to evoke exocytosis (Mironov and Symonchuk, 2006). If synaptic mitochondria are highly involved in the regulation of synaptic Ca2+ (Mironov and Symonchuk, 2006), a mitochondrial depolarization and reversal of the Ca2+ uniporter would provide sufficient Ca2+ to enable glutamate exocytosis to occur. Yang et al. (2003) also identified that Ca2+ released from mitochondria...
through the mitochondrial Na\(^+\)/Ca\(^{2+}\) exchanger is sufficient to induce synaptic glutamate release. Additionally, Budd and Nicholls (1996a) previously characterized a protonophore releasable pool of Ca\(^{2+}\) within neurons. Therefore, it appears that the manipulation of ΔΨ\(_{m}\) with mitochondrial toxins may alter Ca\(^{2+}\) sequestration within synaptic mitochondria and thereby alter glutamate regulation within the synapse.

Glutamate-induced necrosis

The injury identified during prolonged glutamate excitation in this study is very much in agreement with previous studies including work performed by ourselves (Ankarcrona et al., 1995; White and Reynolds, 1996; Prehn, 1998; Stout et al., 1998; Ward et al., 2000), with prolonged glutamate excitation resulting in a monophasic or biphasic collapse of ΔΨ\(_{m}\), paralleled with a decrease in ΔΨ\(_{p}\), rapid neuronal swelling, and early membrane lysis. Prolonged glutamate excitation also resulted in the rapid decay of ATP as a consequence of the increased activity of both the Na\(^+/K\) and Ca\(^{2+}\) ATPases at the plasma membrane.

What is intriguing from the data presented here is the biphasic DiBAC\(_{2}(3)\) responses (Fig. 4E) during glutamate excitation, where the loss of ΔΨ\(_{p}\) is not a single event but appears to be a slowly developing process. So what may induce a slow loss of ΔΨ\(_{p}\)? The preservation of a polarized plasma membrane is dependent on the regulation of ionic homeostasis by Na\(^+/K\) and Ca\(^{2+}\) ATPases, as well as the Na\(^+/Ca\(^{2+}\) exchanger. During glutamate excitation, a high concentration of Ca\(^{2+}\) is retained within the cytosol and mitochondrial matrix (Tymianski et al., 1993a; Budd and Nicholls, 1996b; Stout et al., 1998; Brocard et al., 2001; Ward et al., 2005). This prolonged increase in cytosolic and mitochondrial Ca\(^{2+}\) has been shown to increase calpain activity (Siman et al., 1989; Faddis et al., 1997; Lankiewicz et al., 2000), and it has been suggested that this increased calpain activation leads to cleavage of the Na\(^+/Ca\(^{2+}\) exchanger, resulting in the progressive disruption of cellular homeostasis (Bano et al., 2005). Additionally, the activation of TRP (transient receptor potential) channels, post glutamate excitation, may also play an integral part in the development of this secondary, slow ΔΨ\(_{p}\) depolarization (Aarts et al., 2003).

Figure 7. Computational modeling of TMRM traces for cerebellar granule neurons after transient glutamate excitation. Cerebellar granule neurons plated on Wilco dishes were loaded with 30 nM TMRM and exposed to glutamate/glycine (100 μM/10 μM) for 5 min. TMRM fluorescence was then monitored over time, and images were taken at 5 min intervals. A, C, E, representative TMRM fluorescent traces (solid line) and fitted traces (dashed lines) for neurons that undergo apoptosis after transient glutamate excitation. B, D, F, H, Modeled changes in both ΔΨ\(_{p}\) (dashed lines) and ΔΨ\(_{m}\) (solid line) for the fitted traces in A, C, E, and F, respectively. TMRM traces (A, C, E, G) are representative of traces obtained from eight separate experiments from different cultures. I. The fitted initial depolarization of ΔΨ\(_{m}\) during glutamate excitation is plotted against the onset of injury (collapse of TMRM signal; n = 5 populations of neurons). J. The fitted maximum mitochondrial hyperpolarization of ΔΨ\(_{m}\) against onset of injury after glutamate excitation (n = 5 populations of neurons).
Glutamate-induced apoptosis and tolerance

In contrast to the necrotic injury induced by prolonged glutamate excitation, transient glutamate excitation resulted in a reversible depolarization of $\Delta \Psi_m$ that was followed by a prolonged hyperpolarization of $\Delta \Psi_m$, with the subsequent collapse of both $\Delta \Psi_m$ and $\Delta \Psi_p$. Cell shrinkage and nuclear condensation occurring hours downstream of the initial excitation (Lankiewicz et al., 2000; Luetjens et al., 2000; Ward et al., 2000). Using the MATLAB-based computational model, we were able to detect changes in both $\Delta \Psi_m$ and $\Delta \Psi_p$ relative to injury onset for populations of single cells after transient glutamate excitation. A correlation was identified between the extent of the initial depolarization of $\Delta \Psi_p$ during the glutamate excitation phase and the onset of injury within neurons, with those neurons having a more pronounced depolarization of $\Delta \Psi_p$ during the excitation phase entering a more rapid cell death. Previous studies have identified that excitotoxic injury is highly dependent on the duration and intensity of glutamate/NMDA receptor overactivation (Choi, 1987; Tymianski et al., 1993b; Sattler et al., 1998). Because of the variability in the initial $\Delta \Psi_p$ depolarization identified after glutamate excitation in this study, it is evident that there are marked variations in the type and number of glutamate/NMDA receptors present at the plasma membrane between neurons within a “homogeneous” culture.

The most significant findings in this study involve the relationship between the hyperpolarization of $\Delta \Psi_m$, the changes in neuronal metabolism, and neuronal survival after transient glutamate excitation. A hyperpolarization of $\Delta \Psi_m$ has previously been described in hippocampal neurons exposed to staurosporine (Poppe et al., 2001) and 30 min oxygen glucose deprivation (Iijima et al., 2003), and also in primary rodent cortical neurons (Perry et al., 2005) after the induction of the regulatory protein Tat (transactivator of transcription) by HIV-1. The increase in $\Delta \Psi_m$ identified was associated with the onset of apoptotic injury, as is true for the majority of neurons in this study. Here, we could rapidly interpret the TMRM fluorescent responses for a number of populations of single-cell data with the MATLAB-based computational model. From this, a positive correlation was established between $\Delta \Psi_m$ and neuronal survival, with neurons displaying a more pronounced hyperpolarization of $\Delta \Psi_m$ surviving longer, a correlation that may have been inadvertently missed in previous studies (Poppe et al., 2001; Iijima et al., 2003; Perry et al., 2005). Additionally, the MATLAB-based analysis allowed us to identify a subset of neurons tolerant to glutamate excitation that had a significantly higher hyperpolarization of $\Delta \Psi_m$ than apoptotic neurons after transient glutamate excitation.

Why does a hyperpolarization of $\Delta \Psi_m$ promote or indicate survival? Glutamate excitation results in an early and rapid depletion in neuronal ATP levels (Atlante et al., 1996; Almeida et al., 1998). To counteract this loss of ATP, neurons can increase their capacity to provide extra fuel, NADPH/FADH$_2$, to meet the energy demands within the cell (Shuttleworth et al., 2003; Brennan et al., 2006). Because glutamate excitation results in the accumulation of Ca$^{2+}$ within the mitochondrial matrix (Budd and Nicholls, 1996b; Wang and Thayer, 1996), the activation state of mitochondrial dehydrogenases will be altered increasing proton extrusion (Hansford, 1994a,b). We have previously identified that mitochondria retain Ca$^{2+}$ within the mitochondrial matrix after transient glutamate excitation (Ward et al., 2005), which may lead to a prolonged alteration in dehydrogenase activity. What is evident in this study is that after glutamate excitation, the energetic state within neurons undergoing apoptosis or that are tolerant to the stimulus does not return to the prestimulus resting state, with a sustained increased $\Delta \Psi_m$ that is coupled with increased glucose uptake and NADPH availability within the neurons.

Our key finding that neurons with an increased $\Delta \Psi_m$ (and capacity to increase mitochondrial substrates NADPH and FADH$_2$) after glutamate excitation survive longer or tolerate the stimulus is also supported by Vergun et al. (2003), who have...
shown that an inhibition of glycolysis is sufficient to induce a hypersensitivity of primary cortical neurons to glutamate excitation. It would therefore appear that the injury or tolerance induced is a function of the availability of ATP within the cell, with any variability between responses dictated by the ability of each neuron to produce ATP, a finding that may have a significant impact for our understanding of neuronal conditioning and tolerance.

References


