
Royal College of Surgeons in Ireland
e-publications@RCSI

Medicine Articles Department of Medicine

1-3-2012

A novel neutrophil derived inflammatory
biomarker of pulmonary exacerbation in cystic
fibrosis.
Emer P. Reeves
Royal College of Surgeons in Ireland

David A. Bergin
Royal College of Surgeons in Ireland

Sean Fitzgerald
Royal College of Surgeons in Ireland

Elaine Hayes
Royal College of Surgeons in Ireland

Joanne Keenan
Dublin City University

See next page for additional authors

This Article is brought to you for free and open access by the Department
of Medicine at e-publications@RCSI. It has been accepted for inclusion in
Medicine Articles by an authorized administrator of e-publications@RCSI.
For more information, please contact epubs@rcsi.ie.

Citation
Reeves EP, Bergin DA, Fitzgerald S, Hayes E, Keenan J, Henry M, Meleady P, Vega-Carrascal I, Murray MA, Low TB, McCarthy C,
O'Brien E, Clynes M, Gunaratnam C, McElvaney NG. A novel neutrophil derived inflammatory biomarker of pulmonary exacerbation
in cystic fibrosis. Journal of Cystic Fibros. 2012;11(2):100-7

http://epubs.rcsi.ie/
http://epubs.rcsi.ie/
http://epubs.rcsi.ie/
https://epubs.rcsi.ie
https://epubs.rcsi.ie/medart
https://epubs.rcsi.ie/med
mailto:epubs@rcsi.ie
http://epubs.rcsi.ie/
http://epubs.rcsi.ie/


Authors
Emer P. Reeves, David A. Bergin, Sean Fitzgerald, Elaine Hayes, Joanne Keenan, Michael Henry, Paula
Meleady, Isabel Vega-Carrascal, Michelle A. Murray, Teck Boon Low, Cormac McCarthy, Emmet O'Brien,
Martin Clynes, Cedric Gunaratnam, and Noel G. McElvaney

This article is available at e-publications@RCSI: https://epubs.rcsi.ie/medart/49

https://epubs.rcsi.ie/medart/49


— Use Licence —

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

This article is available at e-publications@RCSI: https://epubs.rcsi.ie/medart/49

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://epubs.rcsi.ie/medart/49


 1 

A novel neutrophil derived inflammatory biomarker of pulmonary exacerbation in 

cystic fibrosis.   

Emer P. Reeves
a*

, David A. Bergin
a*

, Sean Fitzgerald
a
, Elaine Hayes

a
, Joanne Keenan

b
, 

Michael Henry
b
, Paula Meleady

b
, Isabel Vega-Carrascal

a
, Michelle A. Murray

a
, Teck 

Boon Low
a
, Cormac McCarthy

a
, Emmet O’Brien

a
, Martin Clynes

b
, Cedric Gunaratnam

a
 

and Noel G. McElvaney
a
. 

 

a 
Respiratory Research Division, Department of Medicine, Royal College of Surgeons in 

Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland. 

 b 
National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, 

Dublin 9, Ireland.  

*
E.P.R. and D.B. contributed equally to this work. 

 

Address for correspondence: Dr Emer P. Reeves PhD MSc, Respiratory Research 

Division, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont 

Hospital, Dublin 9, Ireland; e-mail: emerreeves@rcsi.ie 

  

Running title: A neutrophil biomarker of exacerbations. 

Key words: Cystic fibrosis, alpha-1 antitrypsin, CD16b, infection, inflammation, 

pulmonary exacerbation. 

 

 

 



 2 

Abstract 

Background: The focus of this study was to characterize a novel biomarker for cystic 

fibrosis (CF) that could reflect exacerbations of the disease and could be useful for 

therapeutic stratification of patients, or for testing of potential drug treatments. This study 

focused exclusively on a protein complex containing alpha-1 antitrypsin and CD16b 

(AAT:CD16b) which is released into the bloodstream from membranes of pro-

inflammatory primed neutrophils.   

Methods:  Neutrophil membrane expression and extracellular levels of AAT and CD16b 

were quantified by flow cytometry, Western blot analysis and by 2D-PAGE. Interleukin-

8 (IL-8), tumour necrosis factor-alpha (TNF-alpha) and AAT:CD16b complex were 

quantified in CF plasma (n=38), samples post antibiotic treatment for 14 days (n=10), 

chronic obstructive pulmonary disease (n=10), AAT deficient (n=10) and healthy control 

(n=14) plasma samples by ELISA.    

Results: Cell priming with IL-8 and TNF-alpha caused release of the AAT:CD16b 

complex from the neutrophil cell membrane. Circulating plasma levels of IL-8, TNF-

alpha and AAT:CD16b complex were significantly higher in patients with CF than in the 

other patient groups or healthy controls (P<0.05). Antibiotic treatment of pulmonary 

exacerbation in patients with CF led to decreased plasma protein concentrations of 

AAT:CD16b complex with a significant correlation with improved FEV1 (r= 0.84, 

P=0.005). 

Conclusion: The results of this study have shown that levels of AAT:CD16b complex 

present in plasma correlate to the inflammatory status of patients. The AAT:CD16b 

biomarker may become a useful addition to the clinical diagnosis of exacerbations in CF.  
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1. Introduction 

Cystic fibrosis is an autosomal recessive condition and although a multi-organ 

disorder, end-stage lung disease with chronic bacterial infection is the major cause of 

morbidity and mortality in affected individuals (1). The pathogenesis of lung disease 

induced by CF is a direct result of decreased chloride secretion and hyper-absorption of 

sodium, resulting in the retention of dehydrated mucus within the airways (2). This 

thickened mucus provides an ideal environment for bacterial infection in the respiratory 

tract. Staphylococcus aureus (S. aureus) is the major bacterial pathogen in early years but 

subsequently Pseudomonas aeruginosa (P. aeruginosa) becomes the prominent pathogen 

in adult patients (3, 4). Adding to this lung microbiome in CF, obligate anaerobes in CF 

sputum samples including Prevotella, S. saccharolyticus, Peptostreptococcus prevotii 

and Actinomyces have been detected (5, 6). Intravenous (i.v.) antibiotics are normally 

used for acute infective exacerbations with efficacy assessed by monitoring respiratory 

function, body weight and circulating markers of systemic inflammation (7).  

In addition to ineffective mucociliary and cough clearance, persistent expression 

of inflammatory cytokines and chemokines plays a major role in the pathogenesis of 

chronic lung disease (8), leading to recruitment and activation of neutrophils in the CF 

airways (9). Longitudinal and prospective studies of infants with CF and also within an 

animal model with mutated CFTR genes, demonstrates that airway inflammation follows 

respiratory infection (10). Thus an increasing volume of clinical data supports the use of 

early antimicrobial treatment to inhibit (11) or delay (12) bacterial infection and to 

achieve decreased hospitalization and improved patient survival. For this reason there has 

been increased interest in the use of infective exacerbations (frequency and resolution) as 
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an outcome measure in clinical trials and sensitivity to treatment. However, whilst there 

are a number of criteria put forward to define an exacerbation (13-16) variability among 

parameters exists (17). Moreover, as new agents are investigated in clinical trials and new 

therapeutic targets are identified, it is becoming increasingly important to accurately 

define the clinical signs and symptoms of pulmonary exacerbations and to define 

objective markers of infection (18). 

Inflammatory biomarkers represent a solution to the variation in the clinical 

criteria defining exacerbations in CF. Thus far identified biomarkers indicative of 

increased pulmonary inflammation with P. aeruginosa infection include serum levels of 

G-CSF (19) and matrix metalloproteinase-1, -8 and -9  (20). Alternatively levels of 

cytokines including IL-8 (21), neutrophil released elastase (22), myeloperoxidase (23) 

and cathepsin B and S (24) have been evaluated as markers of pulmonary exacerbation in 

sputum samples. However, one aspect of neutrophil physiology which has largely been 

overlooked is pre-activation or priming of the circulating cell. Neutrophil priming is a 

prerequisite for homing to the lung and can be used as read-out for the in vivo action of 

pro- and anti-inflammatory cytokines. Consequently, we hypothesized that markers of 

neutrophil priming in the systemic compartment would serve as an early read-out for 

pulmonary exacerbation in CF and should be normalized upon optimal treatment. 

Recently we have shown that the acute phase protein alpha-1 antitrypsin, is bound to the 

circulating neutrophil via interaction with the glycosylphosphatidyl-inositol (GPI) linked 

membrane protein CD16b (FcRIIIb) (25). Moreover, soluble immune complex (sIC) 

primed the circulating neutrophil to release AAT from the cell membrane within a protein 

complex with CD16b. Within the present study we investigated the potential of 
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neutrophil released AAT:CD16b protein complex to serve as a potential marker of 

infective inflammation and resolution of pulmonary exacerbation in adult patients with 

CF. Some of the results of this study have been previously reported in the form of an 

abstract (26). 
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2. Materials and methods 

2.1 Chemicals and reagents  

All chemicals and reagents were endotoxin free and were purchased from Sigma-

Aldrich unless indicated otherwise. 

 

2.2 Patient groups 

Four patient groups and healthy control volunteers were recruited to this study as 

follows: 1: Asymptomatic alpha-1 antitrypsin deficient individuals (AATD) not receiving 

therapy were recruited from the Irish Alpha-1 Antitrypsin Deficiency Registry (n=10, 

mean age 43.95 ± 8.53). AATD patients had plasma AAT levels  <11 M  and were 

clinically stable with a forced expiratory volume in one second (FEV1) of 98.2% ± 

17.48% predicted. 2: Adult patients with COPD (n=10) and a history of smoking were 

recruited as previously described (27).  3: Patients with CF (n=38, mean age 26.8 ± 5.9) 

were genotyped for cystic fibrosis transmembrane conductance regulator mutations. 

Treatment of an acute bacterial exacerbation in 10 patients with CF involved i.v. 

administration of colomycin (2 million units i.v. 3 times daily (t.d.s)), 

piperacillin/tazobactam (4.5g i.v. t.d.s.), flucloxacillin (2g i.v. 4 times daily (q.d.s)), 

meropenem (2g i.v. t.d.s.) and/or ciprofloxacin (400mg i.v. 2 times daily (b.d.)). An 

exacerbation was defined by previously validated criteria (28).  4: All non-CF 

bronchiectasis patients (n= 6, mean age 64 ± 6.7, mean % FEV1 of 59% predicted) were 

recruited from a specialized non-CF bronchiectasis clinic and had no evidence of an 

exacerbation at the time of recruitment. 5: Control volunteers (n=14, mean age 34.72 ± 

3.17) had no respiratory symptoms and were not on medication. All participants gave 
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written informed consent to participate in the study, which was approved by Beaumont 

Hospital Ethics Committee.    

 

2.3 Neutrophil isolation and membrane fractionation. 

Neutrophils were purified from whole blood and membranes were isolated as 

previously described employing sucrose density ultracentrifugation (25). The 

methodology for flow cytometry, proteomic analysis, SDS-PAGE and Western blotting 

of neutrophil plasma membranes can be found within the supplemental materials and 

methods.  

 

2.4 Enzyme linked immunosorbent assays (ELISAs) 

The concentration of IL-8 or TNF-alpha in plasma samples was measured by 

enzyme linked immunosorbent assay (ELISA), conducted in accordance
 

with the 

manufacturer’s instructions (R&D Systems). For the detection of AAT:CD16b complex 

within plasma samples of healthy control, AATD or patients with CF, 5g/ml of specific 

mouse anti-CD16b (R&D systems) was employed as a capture antibody and  50ng/ml of 

polyclonal goat anti-AAT specific antibody (Abcam) as a detection antibody, followed by 

an anti-goat IgG conjugated to HRP. Prior to each assay, wells from Nunc 96-well 

microtiter plates were coated with capture antibody suspended in Buffer A (15 mM 

Na2CO3 and 35 mM NaHCO3, pH 9.3) over night at 4°C. The wells were subsequently 

washed in Buffer A, blocked with bovine serum albumin (BSA; 1% w/v) for 1h and 

exposed to patient plasma (100l). As the ELISA was based on quantification of AAT 

complexed to CD16b that is captured by the anti-CD16b antibody, serial dilutions of 
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purified human AAT  was simultaneously coated in triplicate in the Nunc 96-well 

microtiter plate to establish a standard curve as previously described (29). Controls 

included all reagents except capture, detection antibody or biotinylated secondary 

antibody.   

 

2.5 Statistical analysis 

All experiments were performed a minimum of three times and results expressed 

as means ± standard error of the mean. The data was analyzed with the GraphPad Prism 

version 4.03 for Windows (GraphPad Software, USA). Continuous data were tested for 

normality (1 sample Kolmogorov - Smirnoff test) and where normal were compared 

using an unpaired student t-test. Differences were considered significant at P ≤ 0.05. 

Quantification of protein abundance was determined using the biological variation 

analysis module of Decyder™ using ANOVA-1 analysis for comparing across the 

different groups (healthy controls, non-CF bronchiectasis and CF samples pre- and post-

antibiotic treatment). Differential expression was defined as greater than 1.5-fold change 

in expression with a P-value ≤ 0.05.   
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3. Results  

3.1 Proinflammatory mediators cause release of AAT and CD16b from neutrophil 

membranes. 

We have previously shown that exposure of neutrophils to sIC causes release of 

AAT and CD16b from the neutrophil membrane in a complex form (25). To build on this 

background information the effect of the proinflammatory stimulus IL-8, on 

release/shedding of AAT and CD16b from the neutrophil membrane was investigated. 

Neutrophils were primed with IL-8 (10ng/2x10
7
 cells) and after 10 min of treatment a 

significant decrease in cell surface AAT was detected by flow cytometry (control 

untreated mean fluorescence = 50.98 ± 0.67 and IL-8 treated cells mean = 17.62 ± 0.06, 

P<0.05) (Fig. 1A). Moreover, the observed decrease in membrane AAT corresponded 

with a reduction in CD16b expression (control untreated mean fluorescence = 38.75 ± 

0.11 and IL-8 treated cells mean = 19.22 ± 0.05, P<0.05) (Fig. 1B). Furthermore, we have 

previously shown that release of AAT:CD16b complex from the cell membrane in 

response to sIC involves surface sheddase activity including ADAM-17 (25). We 

therefore investigated whether ADAM-17 activity was required for concomitant release 

of AAT with CD16b in response to TNF-alpha. This was confirmed when cells were 

primed with TNF-alpha (10ng/2x10
7
 cells) and the extracellular supernatants analysed by 

Western blot for the presence of released CD16b and AAT (Fig. 1C). TNF-alpha induced 

release of CD16b and AAT at 5 and 10 min post exposure, an effect inhibited by 

inclusion of the  specific ADAM-17 inhibitor, TAPI-1 (10 M) (30).  TAPI-1 prevented 

release of AAT and CD16b in response to TNF-alpha and significantly reduced the 

extracellular detectable level of the two proteins by approximately 80% at the 5 min time 
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point (P<0.05) (Fig. 1D). Collectively, these results demonstrate that neutrophils primed 

by pro-inflammatory mediators including IL-8 and TNF-alpha, rapidly release AAT and 

CD16b from the neutrophil membrane. 

 

3.2 Increased levels of proinflammatory mediators and CD16b:AAT  complex in plasma 

from CF patients. 

Quantification of IL-8 by ELISA revealed significantly elevated levels of IL-8 in 

CF plasma compared to COPD and control subjects (553.8 ± 82.2 versus 249.9 ± 26.2 

and 168.3 ± 51.2 pg/ml plasma respectively, P<0.05) (Fig. 2A). In accordance with 

results obtained for IL-8, significantly elevated levels of TNF-alpha were measured in CF 

plasma compared to COPD and control subjects (10.43 ± 2.12 versus 1.56 ± 0.75 and 

4.16 ± 1.02 pg/ml plasma respectively, P<0.05) (Fig. 2B). Moreover, individuals with CF 

were more likely to have elevated plasma levels of AAT:CD16b compared to COPD and 

control groups
 
 (Fig. 2C). Significantly higher levels of AAT:CD16b protein complex 

were detected in CF patient plasma (6.47 ± 0.65 ng/ml) compared with results from the 

other groups (COPD = 0.73 ± 0.26,  AATD = 0.01 ± 0.005 and control =  0.80 ± 0.24; 

P<0.05) (Fig. 2C). This sandwich ELISA employed a detection antibody to AAT and 

measured negligible levels of AAT:CD16b complex in plasma of AATD individuals. 

Accordingly, this sample cohort served as a negative control and a measure of accuracy 

of the AAT:CD16b ELISA.  

Next, we analyzed the correlation between levels of AAT:CD16b and 

proinflammatory mediators (IL-8 and TNF-alpha) within CF plasma. The combined IL-8 

and TNF-alpha levels in plasma showed a significant positive correlation with the 
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concentration of AAT:CD16b complex (n = 62, r = 0.4223; P = 0.0001; Fig. 3). Taken 

together these results illustrate a novel correlation between increased pro-inflammatory 

mediators and AAT:CD16b complex plasma levels. 

  

3.3 Levels of AAT:CD16b complex in CF patients decrease post antibiotic therapy. 

To determine if levels of AAT:CD16b complex in plasma could reflect the 

inflammatory states of individuals with CF, we carried out analysis of patients plasma 

pre- and post-antibiotic therapy. Patients were treated for an acute microbial exacerbation 

related to Pseudomonas aeruginosa (P. aeruginosa) and/or Staphylococcus aureus (S. 

aureus) bacterial infection predominately. As illustrated in Table 1, an improvement in 

spirometry measurements was observed in most cases following treatment (pretreatment 

FEV1 % predicted mean of 35.20, range 23-48; post-treatment mean 43.60, range 24–

65).  

CF plasma samples before and after intravenous antibiotic therapy were quantified 

for AAT:CD16b complex by ELISA. Of the 10 patient samples analyzed, levels of 

AAT:CD16b decreased after the administration of antibiotic therapy with the exception 

of 2 (Fig. 4A). These latter two patients were deemed nonresponsive to treatment and 

clinical symptoms did not improve with therapy, as measured by a decreased increment 

in FEV1 (Table 1: CF4 & CF6).  

 Proteomic analysis was carried out to evaluate the expression of the AAT:CD16b 

complex on isolated neutrophil membranes pre- and post-therapy.  The 6 patients with CF 

selected for proteomic analysis were representative of the whole group (same degree of 

exacerbation) and controls for this experiment included membrane samples from 6 non-
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CF bronchiectasis (inflammatory control) and 6 healthy control donors. Antibiotic 

treatment modulated expressions of multiple protein spots present on analytical 2-D gel 

images compared to the samples collected without treatment on day 0. In total, ~750 

spots were detected on the 2-D analytical gels by DeCyder software.  When comparing 

the membrane protein spots on the gels from day 0 with that of 14-day post treatment and 

control membranes, 36 spots showed differential expression. Two of these spots were 

down-regulated in CF samples on day 0, while they were increased at least 1.5-fold in 

both the membrane samples from the 14-day-treated CF patients and the samples from 

the control persons (non-CF bronchiectasis and healthy control membranes, P<0.05 by 

ANOVA-1).  Those 2 unknown spots were excised from the gels and identified as AAT 

and CD16b by LC-MS/MS (accession number gi994572 and gi703025, respectively). 

Densitometry of Western blots of CF membranes for AAT and CD16b pre- and post-

antibiotic therapy, confirmed proteomic results (Fig. 4B&C) and indicated significantly 

increased expression of AAT and CD16b (P=0.01 and P=0.05 respectively) on CF 

neutrophil membranes post antibiotic treatment. Of clinical importance, post antibiotic 

treatment, a positive correlation was found between % increase in FEV1 and reduced 

circulating plasma levels of AAT:CD16b (n = 10, r = 0.84, p < 0.005; Fig. 5). 

Collectively these results indicate that treatment of an exacerbation with antibiotic 

therapy in CF results in decreasing levels of plasma AAT:CD16b, with a corresponding 

increase in the level of membrane bound complex and improved FEV1.  
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4. Discussion 

 Pulmonary exacerbations are important contributors to morbidity and are 

associated with lung function decline over 1 year in CF (31). However, a foremost 

obstacle in investigating the processes and functional changes associated with CF 

exacerbations is the lack of a clear diagnostic standard. A circulating biomarker of 

neutrophil priming prior to airway neutrophil migration and activation would serve as a 

specific biomarker for the early detection of CF exacerbations and the subsequent 

response to antibiotic treatment. In this study we have combined well-defined clinical 

groups and demonstrated that plasma levels of neutrophil released AAT:CD16b complex 

correlate with circulating plasma levels of pro-inflammatory mediators. Post antibiotic 

treatment of CF pulmonary exacerbation, we observed an increase in FEV1 and a 

corresponding decrease in plasma protein concentration of AAT:CD16b complex. These 

results indicate that the AAT:CD16b plasma biomarker effectively reflects exacerbations 

of the disease. 

 Research within this area has identified a number of possible biomarkers of CF 

exacerbation. For example, by employing a proteomic approach of induced sputum from 

adult patients with CF, proteolytic degradation and glycosylation of mucins MUC5B and 

MUC5AC (32) or degradation of IgG and alpha-1 antitrypsin, were proposed as 

predictors of CF lung exacerbation (23). By immunometric techniques sputum levels of 

IL-8 have also been shown to significantly alter following treatment of CF exacerbations 

with antibiotic therapy, suggestive of a noninvasive outcome measure to assess response 

to therapy in CF patients (33). However, Downey et al (2007) did not find a reduction in 

sputum IL-8 levels (7), indicating that sputum IL-8 correlates poorly with lung function, 
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thus questioning the suitability of IL-8 as a reliable biomarker of CF exacerbations. 

Therefore as an alternative to using sputum, serum samples from patients with CF have 

also been compared with control sera in order to recognize protein expression profiles 

specific to CF during an exacerbation. Compared to healthy controls, matrix 

metalloproteinase (MMP-1, -8 and -9) and G-CSF serum levels were elevated in adult 

patients with CF and correlated with pulmonary exacerbation and antibiotic treatment 

(19, 20). Serum levels of S100A12 (34), S100A8/A9, CRP and vascular endothelial 

growth factor (35) have also been suggested as serum markers of acute infectious 

exacerbations and to decrease significantly post treatment of an exacerbation. Moreover, 

whilst CF exacerbations were not shown to modulate neutrophil function (36), neutrophil 

derived proteins including myeloperoxidase in peripheral blood appeared to reflect 

inflammatory changes post antibiotic treatment (37). Myeloperoxidase however is a 

component of neutrophil primary / azurophilic granules and peroxidase exocytosis is a 

tightly regulated process. Within the present study, rather than identifying markers of 

neutrophil activation we have focused on a plasma marker of neutrophil pre-activation or 

priming. Priming can be induced by pro-inflammatory stimuli which are increased in an 

in vivo state of CF exacerbation and which prepare the neutrophil for a state of readiness 

preceding complete activation. The fundamental mechanism leading to a primed response 

involves increased levels of cytosolic calcium (38), upregulated tyrosine phosphorylation 

(39) and cytoskeletal rearrangements (40). Pseudomonas alginate (41), TNF-alpha and 

IL-8 have been shown to be important priming agents for  CF neutrophils (42). Recently 

we have shown that AAT is localized to the neutrophil plasma membrane within lipid 

rafts bound to CD16b (FcRIIIb) and is released in complex form (AAT:CD16b) by 
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priming with sIC (25). CD16b is unique in that it is the only Fc receptor linked to the 

plasma membrane by a GPI anchor and the metalloprotease ADAM-17 has been 

implicated in the shedding of CD16b. Within the present study we show that priming of 

neutrophils in vitro with IL-8 and TNF-alpha causes release of CD16b and AAT to the 

extracellular milieu and in vivo, AAT:CD16b complex plasma levels correlate strongly 

with these pro-inflammatory mediators.  

  Although antibiotic responsiveness in the absence of quantitative cultures and 

serotype switching of bacterial species is only suggestive of infective exacerbations, 

within our study combination antibiotic treatment of individuals for an acute exacerbation 

involving P. aeruginosa and/or S. aureus infection resulted in an improvement in FEV1 

in 8 of 10 patients tested. In addition, the changes in plasma AAT:CD16b following 

antibiotic therapy suggested a direct association of plasma levels of AAT:CD16b 

complex with a changing state of airway inflammation and FEV1. Indeed, a soluble form 

of CD16b released from neutrophils and bound to IgG (43) has previously been detected 

in plasma. However, although the soluble CD16b concentration has been shown to 

increase at inflammatory sites (43, 44), a vigorous examination of its use as a plasma 

biomarker of inflammation or in the analysis of antibiotic efficiency has not been 

previously performed. Moreover, the minimum level of soluble CD16b detected by use of 

a monoclonal antibody in normal serum was 7.3nmol/L (43). In contrast, the lowest 

detectable level of plasma AAT:CD16b was 0.006nmol/L. These results suggest 

increased sensitivity of the dual ELISA for detection of the complex biomarker compared 

to CD16b on its own, possibly due to masking of antibody binding sites within the 

protein complex. The present study is however not without limitations. For example 
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correlates of disease states between healthy controls, COPD, AATD and CF individuals 

are not directly comparable since only patients with CF were in exacerbation and only a 

proportion of these patients had before and after samples of plasma analysed. Moreover, 

data indicate that a fraction of the patients with CF would be indistinguishable from the 

other groups when plasma AAT:CD16b complex is used as a sole marker of 

exacerbation. However, in support of the use of AAT:CD16b as an indicator of response, 

proteomic and Western blot analysis of patient neutrophil plasma membranes pre- and 

post-antibiotic treatment revealed increased membrane bound expression of both AAT 

and CD16b post treatment. Moreover, in this study we have developed a novel 

microplate-based protein binding assay employing the use of two antibodies raised 

against AAT and CD16b which allows for rapid screening of multiple serum samples for 

AAT:CD16b interactions. This method measures a precise protein-protein interaction, 

utilizes relatively small amounts of patient sample, is free of protein modification and 

does not require specialized instrumentation.  Thus the clinical benefit of introducing the 

described AAT:CD16b protein binding assay as an effective tool for evaluating 

pulmonary exacerbations is apparent. Conversely however, the cost-effectiveness in 

terms of health quality gained versus cost of implementation requires further evaluation. 

In conclusion, primed neutrophils have been found in peripheral blood during an 

exacerbation of CF, an observation now supported by our study and the identification of 

circulating levels of AAT:CD16b. Upon treatment of an exacerbation plasma levels of 

AAT:CD16b complex decrease significantly, correlating with an improvement in FEV1.  

These observations illustrate that the expression of neutrophil priming-associated 

biomarkers in peripheral blood can be used as read out for the inflammatory process in 
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CF. The AAT:CD16b biomarker may be of benefit to clinical trials determining if drugs-

in-process are effective against inflammation and may also become an extremely useful 

addition to the clinical diagnosis of exacerbations and management of CF. 
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Fig. 1. Pro-inflammatory mediators cause release of AAT and CD16b from the 

neutrophil membrane.     
FACS analysis showing membrane expression of (A), AAT or (B), CD16b on 

membranes of un-stimulated control neutrophils (con) or in response to IL-8 (10 ng/2x10
7
 

cells). The isotype control antibody is illustrated in black (filled). Experiments presented 

were performed in triplicate on three consecutive days. C: Representative immuno-blots 

(one of 3 separate experiments) showing time course of TNF-alpha (10 ng/2x10
7
 cells) 

induced extracellular release of AAT and CD16b from neutrophils with or without TAPI-

1 (10M).   Experiments employed rabbit and goat polyclonal antibody against AAT and 

CD16b respectively. D; Quantification of AAT and CD16b release from neutrophils 

treated with TNF-alpha in the presence or absence of TAPI-1. TAPI-1 significantly 

reduced release of AAT and CD16b (*P<0.05 compared to respective untreated sample). 
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Fig. 2. Protein levels of inflammatory molecules and AAT:CD16b complex in 

plasma from COPD, AATD, CF and healthy controls.  
ELISA analyses of IL-8 (pg/ml) (A), TNF-alpha (pg/ml) (B) or AAT:CD16b complex 

(ng/ml) (C) in plasma from healthy (control; n=14), COPD (n=10), AATD (n=10) and 

CF (n=38) individuals. Statistical significance was analysed by ANOVA, *P<0.05. 
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Fig. 3. Positive correlation between AAT:CD16b protein complex and 

proinflammatory mediators in plasma. 

The correlation between IL-8 (○) and TNF-alpha (●) and plasma AAT:CD16b protein 

complex levels was deemed significant when = 0.05 (Pearson r = 0.42, P<0.0001, R
2
 = 

0.17).   
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Fig. 4. Levels of AAT:CD16b complex decrease in plasma samples post antibiotic 

therapy. 

 A; ELISA quantification of AAT:CD16b complex (ng/ml) plasma levels before (Pre) 

and 14 days after (Post) antibiotic treatment of patients with CF (n=10). Two 

nonresponsive patients had higher levels of AAT:CD16b complex (dashed line)  B&C; 

Membrane expression of CD16b (B) or AAT (C) on CF neutrophils before (Pre) and after 

(Post) antibiotic therapy. The data presented were calculated using constants obtained of 

Western blot densitometry values. Each measurement is the mean ± S.E (*P<0.05). 
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Fig. 5. Positive correlation between reduced plasma levels of AAT:CD16b protein 

complex and improved FEV1 post antibiotic treatment. 

Correlation between FEV1 (% increase) after two weeks antibiotic treatment of 

individuals with CF (n=10) and changes in plasma levels of AAT:CD16b (ng/ml plasma). 
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Supplemental Materials and Methods. 

Proteomic analysis of neutrophil plasma membranes. 

Neutrophil membrane proteins (25 μg) were minimally labelled with 400 pmol Cy2 (CF 

patients when stable, CF patients during an exacerbation, non-CF bronchiectasis and 

healthy control membranes: internal control), Cy3 (CF patients when stable or CF 

patients during an exacerbation) and Cy5 (healthy control or non-CF bronchiectasis) 

according to manufacturer’s instructions (GE Healthcare, Buckinghamshire, UK).  Six 

biological repeats of each comparison were used with reverse labelling on three repeats. 

IEF was performed using immobilised pH gradient (IPG) strips (pH 3-10, 13cm; GE 

Healthcare) and run for a total of 40k V/h at 22
o
C. Prior to electrophoresis in the second 

dimension, IPG strips
 
were equilibrated twice in 10 ml equilibration buffer [30 %

 
(v/v) 

glycerol, 2 % (w/v) SDS, 6 M urea, 50 mM Tris/HCl, pH
 
6.8]. The first equilibration was 

in 10 ml equilibration
 
buffer containing 2 % (w/v) DTT and the second contained 2.5

 
% 

(w/v) iodoacetamide.  After second dimension SDS-PAGE (10% w/v) gels were scanned 

using the Typhoon 9400 variable mode imager (GE Healthcare) with image analysis 

performed using the DeCyder
TM

 Software version 6.5 (GE Healthcare). Statistical 

analysis and quantification of protein abundance was as previously described using the 

biological variation analysis module (BVA) of DeCyder
TM

 (32). Protein identification by 

LC-MS/MS was performed on an Ultimate 3000 nanoLC system (Dionex), interfaced to 

an LTQ Orbitrap XL (Thermo Fisher Scientific) as previously described (30). Database 

searches were performed using TurboSEQUEST software (Bioworks Browser version 

3.3.1) (Thermo Fisher Scientific). The following filters were applied: for charge state 1, 

XCorr>1.5; for charge state 2, XCorr>2.0; for charge state 3, XCorr>2.5.  
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SDS-PAGE and Western blot analyses.  

Samples were subjected to SDS-PAGE under denaturing conditions in 12% NuPAGE® 

gels (Invitrogen™, Carlsbad, CA, USA) following the manufacturer’s instructions. After 

electrophoresis gels were transferred onto 0.2 μm nitrocellulose or PVDF membrane 

(Sigma-Aldrich, St. Louis, MO, USA) by Western blotting using a semi dry blotter for 1 

h at 100mA. Membranes were blocked for 1 h in 3% dry milk (w/v) and 1% bovine 

serum albumin (BSA) in PBS containing 0.25% (v/v) Tween 20 (PBST). Blots were 

incubated with 1.0 μg/ml polyclonal rabbit anti-AAT specific antibody (Abcam, UK) or 

polyclonal goat anti-CD16b specific antibody (R&D Systems, UK).  The secondary 

antibodies were HRP-linked anti-rabbit,   or –goat  IgG (Cell Signalling Technology, 

Danvers, MA, USA). Immuno-reactive protein bands were visualized employing 

SuperSignal® West Pico Chemiluminescent Substrate (Pierce, Rockford, IL, USA) after 

exposure to Kodak® X-Omat LS Film.   

 

Flow cytometry 

Cells remained untreated or treated with IL-8 (10ng/2x10
7
 cells) for 10 min at 37

o
C. 

Neutrophils were fixed (4 % (w/v) paraformaldehyde) and blocked (2% (w/v) BSA) for 

1h and incubated with FITC labeled goat polyclonal anti-AAT (1g/10
6
 cells) (Abcam, 

UK) or mouse anti-CD16b (Santa Cruz) followed by FITC labeled bovine anti-mouse 

secondary antibody (Santa Cruz). Control samples were exposed to relevant non-specific 

isotype control IgG or secondary labeled antibody alone and fluorescence counted by 

flow cytometry. A total of 10,000 events were collected. The data were analyzed using 

BD FACSDiva software (Franklin Lakes, NJ). 
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