


proteins involved in the UPR pathway. Most prominent was

reduced levels of KDEL-containing proteins although all branches

of the UPR were affected. This was probably due to post-

translational mechanisms since transcript levels of several tested

genes were normal. 14-3-3f overexpression did have effects on

mRNA, however, reducing Xbp1 splicing, a consequence of the

activation of the IRE1 branch of the UPR that promotes increased

expression of ER chaperones [22]. Taken together, these data

suggest overexpressed 14-3-3f may produce a selective adjustment

of the UPR. Since this included reduced levels of proteins involved

in folding, this is consistent with 14-3-3f functioning as a sweeper

of mis-folded proteins [3].

ER stress is implicated as a patho-mechanism underlying

neurodegeneration in several diseases, including epilepsy [44],

although NMDA receptor-induced neuronal death can occur

independently of ER stress in vivo [45]. Studies here demonstrated

that overexpressed 14-3-3fwas capable of protecting against ER

stress induced by tunicamycin. Tunicamycin causes ER stress by

preventing N-glycosylation of proteins, thus resulting in a build-up

of proteins in the ER and triggering the UPR and ER stress-

induced apoptosis, although direct effects on neurotransmission

have been reported [46]. Tunicamycin injection into the brain

caused the selective death of neurons within the dentate gyrus,

consistent with in vitro reports [17]. 14-3-3f strongly protected

Figure 5. Baseline and seizure EEG in 14-3-3ftg mice. (A). Protein levels of the kainic acid receptors GluR6/7 and KA2 in microdissected
subfields of hippocampus from wt and 14-3-3ftg mice. (B) Analysis of baseline EEG parameters during 40 min recordings from skull of wt and 14-3-
3ftg mice. No differences were detected between genotypes (n = 6 per group). (C) Representative EEG spectral activity plot of baseline EEG in wt and
14-3-3ftg mice. (D, E) Representative spectral activity plot of EEG frequency and amplitude, and quantitative analysis of seizure duration (high
amplitude and high frequency discharges) for wt and 14-3-3ftg mice during the 40 min after intra-amygdala microinjection of kainic acid. No
differences were detected between genotypes (n = 6-7 per group).
doi:10.1371/journal.pone.0054491.g005
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Figure 6. 14-3-3ftg mice are protected against seizure-induced neuronal death in vivo and in vitro. (A) Representative FJB and TUNEL
staining for wt and 14-3-3ftg mice 72 h after status epilepticus for the CA1, CA3 and hilar regions. Scale bar, 120 mm. (B) Semi-quantification of
seizure damage and neuron survival (NeuN counts) for wt and 14-3-3ftg mice (n = 6-10 per group). (C) Primary cultures of hippocampal neurons from
wt and 14-3-3ftg mice were treated with kainic acid and then cell death determined as percentage propidium iodide (PI) positive. (Panels above)
Representative photomicrographs of PI-stained neurons 24 h after KA treatment. Scale bar, 25 mm. Graph shows reduced cell death in 14-3-3ftg mice
(n = 3 per group). *p,0.05; **p,0.01; ***p,0.001 compared to wt.
doi:10.1371/journal.pone.0054491.g006
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against tunicamycin-induced neuronal death despite the lower

resting levels of UPR/ER stress proteins. Even after treatment,

levels of many UPR/ER stress proteins remained lower in 14-3-

3ftg mice, excluding an effect secondary to normalization of levels.

Higher 14-3-3f levels may therefore reduce the stress caused by

tunicamycin and over-expressed 14-3-3f may be sufficient to

protect in the absence of a complete complement of ER stress

chaperones. 14-3-3f delivery may be a means to reduce ER stress

where the normal UPR response is inadequate or otherwise

disrupted, such as in certain neurologic and neurodegenerative

diseases [47]. The data also compliment the findings of 14-3-3f
silencing in hippocampus, which triggers up-regulation of KDEL-

containing proteins and sensitizes against tunicamycin-induced cell

death [48].

A major finding in the present study was that overexpression of

14-3-3f potently protected against seizure-induced neuronal death

in vivo. Protection was found for both pyramidal and hilar

interneurons, indicating 14-3-3f overexpression protects regardless

of neuronal phenotype or location within the hippocampal

circuitry. These results compliment earlier work that showed

lowering 14-3-3f levels in the mouse hippocampus increased

neuronal death after kainate treatment of organotypic cultures

[48]. The extent of protection is similar and in several cases

greater than achieved by deletion of pro-apoptotic members of the

Bcl-2 family in the same model [49,50,51]. This would be

consistent with 14-3-3f function either upstream or being involved

in curtailing cell death via actions in more than one compartment.

Over-producing an anti-apoptotic protein may also be more

effective than deleting a pro-apoptotic protein. Again, the

protection obtained was in spite of a lower compliment of ER

stress chaperones in these mice. This agrees with in vivo evidence

that NMDA-dependent neuronal death in vivo is not ER stress-

dependent [45]. This could mean that either 14-3-3f is more

effective than these proteins at protection in this model, or that the

protection derives from functions in addition to ER stress-related

cell death. This is likely; we detected 14-3-3f overexpression

throughout the cell and 14-3-3 is able to sequester various pro-

apoptotic Bcl-2 family proteins which contribute to seizure-

induced neuronal death in the model [12,52]. Whether or not the

reduced hippocampal damage in 14-3-3ftc mice would result in a

beneficial effect on the post-status epilepticus epilepsy phenotype is

uncertain, although our previous studies in which hippocampal

damage was reduced by genetic or other means, led to fewer

spontaneous recurrent seizures [51,53].

Levels of several proteins associated with the UPR have been

found to be higher in the hippocampus of patients with temporal

lobe epilepsy [26,27]. Levels of these proteins were generally

lower, however, in the hippocampus of 14-3-3f transgenic mice

suggesting the model does not phenocopy this molecular feature of

human temporal lobe epilepsy. Nevertheless, elevated 14-3-3f
levels were reported in the microsome-containing fraction of

hippocampus from patients with temporal lobe epilepsy [15].

Although we cannot directly compare the higher 14-3-3f levels in

the transgenic mice with those in patient brain, we may speculate,

on the basis of our results here, that increased 14-3-3f in

intractable human epilepsy could be protective against ongoing

neuron loss. We note, however, that 14-3-3f is not uniformly

neuroprotective, and fails to prevent neurodegeneration in models

of Parkinson’s disease [40]. 14-3-3f can also promote phosphor-

ylation of Tau and chronic over-expression might have potentially

deleterious effects on the brain [54,55], which could be assessed

using the present model. Any strategy to enhance 14-3-3f
expression may provide neuroprotection only against the acute

effects of prolonged seizures or perhaps stroke, which share

common patho-mechanisms such as excitotoxicity and apoptosis-

associated signalling [11].

In summary, the present study demonstrates that 14-3-3f
overexpression results in a selective downregulation of UPR

pathways and confers protection against ER stress- and seizure-

induced neuronal death in the mouse hippocampus. Restitution or

overexpression of this 14-3-3 isoform may be a potential

therapeutic approach for status epilepticus but not necessarily all

CNS diseases associated with impaired 14-3-3f expression [2].
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