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Chapter 6 General Discussion

Breast cancer is a highly heterogeneous disease. This is evident because breast
tumours display numerous different oncogenic characteristics, with varying degree of
angiogenic, invasive and metastatic potential. These differences are detected not
only between patient tumours but also intracellularly within tumours themselves
(Almendro and Fuster 2011). The complex nature of the disease is reflective in the
variability of clinical outcome following therapeutic intervention (Perez 2011). Today
approximately 85% of breast cancer patients will reach a 5 year disease free survival
rate (NCRI). This high success rate is mainly due to improved individual treatment
strategies. Historically histo-pathological tumour classification methods (such as
receptor status, tumour size and lymph node status) were the only clinical systems
set in place to help clinicians decide the best treatment available. Today these
methods have been compiemented with modern molecular classification systems
(Eroles, Bosch et al. 2012). It is these technological advances that have immensely
improved therapeutic outcome for the majority of patients. Nevertheless a
persistent problem faced by clinicians today is the acquired resistance to endocrine

therapies (NCRI).

One of the most important aspects of drug resistance in ER+ breast cancer is
reflected in the ability of a tumour to circumvent the inhibitory aspects of estrogen
deprivation (Sabnis, Jelovac et al. 2005). Estrogen under normal circumstances is
required for regular cell growth and differentiation. In a cancerous environment
enhanced estrogen signalling via the ER sustains the growth of ER+ tumours. For the
past 100 years endocrine therapy blocking estrogen driven ER signalling was one of
the most effective treatments against tumour growth. Although for the most part
effective, the main disadvantage of endocrine therapy is the development of
endocrine resistance. Mechanistic studies in ER biology have increased our
understanding and highlighted the role of estrogen induced extracellular and ligand
free ER activated signalling in resistant tumours. ER activation often results in the
gain of growth factor signalling in a process known as cell signalling crosstalk. Gain of
growth factor signalling is associated with the activation of target genes involved in

metastasis and invasion leading to an aggressive and resistant phenotype.

Previous studies from our group have identified the transcription factor HOXC11 to
be involved in endocrine resistance. HOXC11 was found to be an independent

predictor of poor disease free survival in breast cancer patients and in this study we
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have identified a functional role for HOXC11 in breast cancer. Specifically HOXC11
was shown to induce a poorly differentiated phenotype, increasing cell proliferation,
inducing anchorage independent growth and rendering cells more motile (see
schematic representation Figure 6.1). Conversely we observed that forced
expression of ERa could reverse or modify these effects induced by HOXC11

overexpression.

HOX genes have been studied intently since 1921 when they were first observed in
drosophila fruit flies (Bridges 1921). Today patterns of deregulated HOX expression
have now been well established in cancer (Cillo, Faiella et al. 1999; Grier, Thompson
et al. 2005). The sheer volume of HOX genes and their complex involvement in
numerous regulatory pathways has meant that a huge number of HOX genes and
their function in cancer are yet to be uncovered. Although as yet there is little
research directly involving HOXC11 in breast cancer, a compelling amount of
evidence implicating HOX genes directly with malignant transformation does exist.
Whilst some perturbed HOX proteins are overexpressed in breast cancer others are
downregulated and can promote tumourigenesis via upregulation of GFs or
downregulation of tumour suppressors (Raman, Martensen et al. 2000; Jin, Kong et

al. 2011).

Evidence suggests that HOX genes are also thought to regulate steroid receptor
activity. Probably one of the most studied to date is HOXB13 and its interaction with
the androgen receptor in prostate cancer (Jansen, Sieuwerts et al. 2007; Norris,
Chang et al. 2009). HOXCS is also known to interact indirectly with the androgen
receptor. It blocks recruitment of SRC-3 and CREB binding protein to the AR,
resulting in downregulation of androgen-regulated genes via the inhibition of histone
acetylation, Overexpression of HOXC8 was also found to induce invasion in non-

tumourigenic prostate cells ((Miller, Miller et al. 2003).

The second portion of this study was to elucidate HOXC11 target genes. Specifically
we validated ERa as a HOXC11 target. We observed that HOXC11 can directly bind to
the coding region of the ER gene and impart direct regulation of ER transcription.
Conversely silencing HOXC11 induced upregulation of ER transcription. Given that in
ER biology genetic mutations such as polymorphisms and deletions exert little effect

on endocrine resistance, one can surmise that epigenetic inactivation of the ER might
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be the prevailing mechanism at play. DNA methylation in cancer is a well recognised
mechanism of gene regulation (Jones and Baylin 2002). It is widely accepted that
promoter methylation controls transcriptional regulation by inducing gene silencing
(Jones and Baylin 2002). However, DNA methylation in the gene body (intragenic
DNA methylation) is still a relatively novel area of investigation. Some studies show
that DNA methylation within the gene body can activate gene transcription (contrary
to promoter methylation) (Maunakea, Nagarajan et al. 2010). Current research in
prostate cancer from Friedlander supports this contemporary theory. They surmised
in metastatic castrate-resistant prostate cancer patients some patients with a
deletion of the CYP17A1 gene (a critical gene for AR synthesis and a target of many
AR inhibitors) could circumvent drug treatment through upregulation of CYP17A1
and its target genes via methylation in the gene body (Friedlander, Roy et al. 2012).
Other studies have found that gene body methylation can be interpreted dissimilarly
in different regions of the gene body. Brenet et al, carried out a genome-wide
analyses of DNA methylation and suggest that first exon methylation (downstream
from the TSS) is highly related to gene silencing, in comparison to DNA methylation
within introns and 3’ downstream exons, which are thought not to be associated with
transcriptional silencing (Brenet, Moh et al. 2011). In line with these studies we have
found we found perturbed HOXC11 expression resulted in ER downregulated activity
and propose that exon body methylation may be a mechanism of which HOXC11 can
regulate ER. In turn ER intragenic DNA methylation may induce an increase of ER
independent gene activation through crosstalk with growth factor receptors and thus

could promote a more aggressive phenotype (Figure 6.1).

In breast cancer the general consensus is that the degree of ER DNA methylation
varies widely, this may be due to the varying extent of methylation between different
patients but also due to diverse technical sensitivities (Pathiraja, Stearns et al. 2009).
In this study we observed a decrease in the amount of DNA methylation on the ESR1
(ERat) gene body in the absence of HOXC11, suggestive that ESR1 gene expression is
regulated in a dynamic fashion by HOXC11 levels. There are numerous methods
which can be employed to detect methylation status and future studies will need to
include methods with greater sensitivity. Bisulfite conversion followed by MSP
(methylation specific PCR) may be a superior technique to adequately detect subtle
differences between cancer cells and cancerous cells which have overexpressed or

silenced HOXC11.
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Preliminary results from our group indicate that the HOXC11 overexpressing MCF7
cells recruit significantly more EZH2 (a polycomb group protein), in the exonic region
of ERa than the MCF7 cells alone (Figure 4.9). The polycomb proteins or PcGs are
transcriptional repressor proteins that regulate lineage decisions during
embryogenesis and differentiation and today deregulated PcGs are considered key
regulators of malignant transformation (Bracken and Helin 2009). EZH2 is a direct
histone methyltransferase and is a member of the PRC2 (polycomb repressor
complex 2). One particular study found EZH2 to be highly deregulated in breast
cancer. The increased levels of EZH2 strongly associated with poor clinical outcome
and EZH2 levels were also an independent predictor of breast cancer recurrence.
EZH2 overexpression is thought to induce a neoplastic phenotype characterized by
anchorage-independent growth and cell invasion in normal breast epithelial cell lines
(Kleer, Cao et al. 2003). From our initial observations we can see that a possible
correlation between high EZH2 levels and the HOXC11 induced aggressive phenotype
may exist (Figure 6.1). Further investigations would be necessary however in order
to validate a direct link between HOXC11 and EZH2 in breast cancer. Inhibiting EZH2
in resistant breast cancer would have beneficial prospects. However even though
EZH2 inhibitors have been developed (such as DZNeP) and show anti-tumour
properties in breast cancer cell lines (Hayden, Johnson et al. 2011), at a
pharmacological level they disappoint as they have a short half life and in particular
behave like global methyltransferase inhibitors and are not specific to H3 lysine 27
(Miranda, Cortez et al. 2009). Specific EZH2 inhibitors are urgently needed in order
to improve anti-tumour activity and in the mean time alternative inhibitors such as

the HDAC inhibitors have been employed.

The final portion of this study focused on the regulation of S1008 by both HOXC11
and ERa. S100B was previously identified from our group as a predictive serum
biomarker for endocrine resistance in breast cancer patients (Mcllroy, McCartan et
al. 2010). In a heterogeneous cancer such as the breast, biomarkers are clinically
useful. Breast tumours have a high degree of plasticity and the clinical advantage of
predictive patient endocrine response would have a huge impact on strategic
treatment decisions. The ability to switch or change targeted therapies in order to
adapt to a tumour status at a given time point would no doubt increase longevity of

patient disease free survival. In this study we confirmed the regulation of S1008 by
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HOXC11 and found that ERa can directly compete with HOXC11 for the production of
S100B (Figure 6.1). In a tamoxifen resistant setting HOXC11 overexpression is
dominant and its aggressive phenotype is induced. Nevertheless this mode of action

can be overridden with forced re-expression of functional ERa.

In conclusion, it is well known that ER+ patients respond better to endocrine
treatment. Resistance to tamoxifen in particular is often joined by the concomitant
loss or dysfunction of ER. We propose that increased S100 serum levels in patient
blood could indicate an aberrantly high degree of HOXC11 expression. We observed
overexpression of HOXC11 leads to a loss of ER production. We hypothesized that
HOXC11 may be silencing ER function in an epigenetic manner through a mode of
methylation. Verification of this mechanism will need to be confirmed, however if it
holds true it may lead to new treatment strategies in the fight against endocrine
resistance. Novel DNMTIs (DNA methyltransferase inhibitors) are a relatively new
potential class of anticancer agents. CpG island methylation occurs infrequently in
normal cells, the modulation of this post-translational modification may provide a
selective tumour-specific therapeutic target. DNMTIs work by mediating
hypomethylation of DNA. However toxicity is observed at higher concentrations. For
this reason this class of drug works especially well when used at lower doses and in
combination with other agents or with other treatments. (Gravina, Festuccia et al.
2012). DNMTIs work by modulating many different cellular processes such as
differentiation, apoptosis, cytostasis and tumour angiogenesis (Jones and Baylin
2002; Herman and Baylin 2003).  Although these drugs are still relatively new if
clinical trials prove efficacy in the future, they may help the effectiveness of long
term tamoxifen use. The goal in combining different treatments in the management
of cancer is to prolong disease free survival for the patient especially in particular for

patients that would ordinarily develop resistance.

Investigations in this study have illustrated for the first time a direct function for
HOXC11 in endocrine resistant breast cancer. HOXC11 can promote invasiveness
through downregulation of ERa which under normal healthy circumstances is
associated with fully differentiated functioning breast epithelia. A greater
understanding of HOXC11 and its interactions with the estrogen receptor in breast
cancer is warranted to further elucidate mechanisms which drive the progression of

endocrine resistance. The HOX regulatory network in general is vast and elucidating
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the function of each perturbed HOX cluster and every gene within is nothing short of
a daunting task. The consequences however will be of huge benefit. Breast cancer is
a complex disease and resistance to endocrine therapies is an ongoing challenge for
both clinicians and researchers alike. Only by teasing out the intricate molecular
details will new therapeutic strategies be uncovered. The findings presented here
represent a somewhat minute portion of a very complex network of HOX
deregulation in breast cancer. What is certain is the scope for research into HOX

genes and breast cancer will continue far beyond into the future.
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Figure 6.1 Schematic representations of ERa and HOXC11 signalling in an
endocrine sensitive cell versus and endocrine resistant cell. in the endocrine
sensitive cell, ERa stimulated by estrogen is recruited to the S$1008 promoter
Inhibiting S1008 production. Tamoxifen in the endocrine resistant cell stimulates a
more growth factor pathway signalling mechanism. HOXC11 and ERa are recruited
to the $1008 promoter. HOXC11 in combination with EZH and accompanied by SRC-1,
silences ERa activity via ERa DNA methylation (donated by the red lollipop). $1006
production is activated inducing cell proliferation, migration and leads to a more

aggressive dedifferentiated breast cancer phenotype.
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Appendix 1

Cell culture reagents

Reagent Cat # Supplier
Minimum Essential Media (MEM) M4526 Sigma
Foetal Bovine serum (FCS) F7524 Sigma
L-Glutamine G7513 Sigma
Trypsin -EDTA 10X T4174 Sigma
Charcoal Dextran 6241 Sigma
OPTIMEM 11058 Invitrogen
PBS tablets BR0O014G Oxoid
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Appendix 2

Western blotting buffers

RIPA buffer:

150mM sodium chloride

1.0% NP-40

0.5% sodium deoxycholate

0.1% SDS (sodium dodecyl sulphate)
50 mM Tris, pH 8.0

20% SDS
20g SDS dissolved in 100m| dH,0

10% Ammonium persulphate

100mg/ml dissolved in dH,0, stored at -20°C
Running Buffer

1.92M Glycine

250mM Trizma base

1% SDS

dH20to 1L

Tris Buffered Saline (TBS) 20X
121.1g Tris

175.5g NaCl

dH20to 1L, pH8.3

Use at 1X concentration

TBS-T wash buffer
1X TBS
0.05% Triton X-100
pH7.6

127



Appendix

Blocking buffer
1X TBS
0.05% Triton X-100

5% skimmed milk

1M Tris-HCL, pH 6.8
157.6g Tris-HCL
dH20 to 1L

1.5M Tris-HCL, pH 8.8
236.4g Tris-HCL
dH20 to 1L

Semi dry Transfer Buffer
390mM Glycine

480mM Trizma base
0.37% SDS

20% methanol by volume

dH20to 1L
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Western blotting antibody concentrations and suppliers

Antibody Clonality Concentration Supplier Cat #

ERa mouse 75 pg/ml Novocastra | 6F-11
manoclonal

HOXC11 Mouse 100 pg/ml Santa Cruz sc-81293
monoclonal

S100PB mouse 2 mg/ml Abcam ab14849
monoclonal

BActin mouse N/A Sigma A1978
monoclonal

Mouse IgG | HRP conjugated N/A GE- NXA931

healthcare 1ML
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ChIP buffers

Lysis buffer 1

50 mM Hepes—KQH, pH 7.5

140 mM NaCl
1 mM EDTA
10% Glycerol

0.5% NP-40/Igepal CA-630

0.25% Triton X-100
ddH20

Lysis Buffer 2

10 mM Tris—HCL, pH8.0
200 mM NaCl

1 mM EDTA

0.5 mM EGTA

ddH20

Lysis Buffer 3

10 mM Tris—HCI, pH 8
100 mM NaCl

1 mM EDTA

0.5 mM EGTA

0.1% Na—Deoxycholate
0.5% N-lauroylsarcosine

ddH20
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per 100 ml
Sml (of 1M)
2.8 ml (5M)
0.2 ml (0.5M)
20 ml (50%)
5ml(10%)
2.5ml (10%)
64.5 ml

Imi(1M)

4 ml (5M)

0.2 ml (0.5M)
0.1 ml (0.5M)
94.7 ml

I1ml(1M)
2ml (5M)

0.2 ml (0.5M)
0.1 ml (0.5M)
1ml(10%)
2.5 ml (20%)
93.2 m/
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RIPA buffer

RIPA Buffer Stock [Final] Volume for 50ml
50mM Hepes, pH8.0 1M 50mM 2.5ml
500mM EDTA, pH 8.0 0.5M imM 100pl
10% NP-40 10% 1.00% 5ml
10% DOC 10% 0.70% 3.5ml
dH20 34.8ml
8M LiCl 8M 0.5M 3.125ml
1 Pl Tablet in 2ml dH20 1X iml
Total 50ml
TE buffer

18.6mg EDTA

78.8 mg Tris HCL

50 ml dH,0, pH 8.0

Elution buffer

Elution Buffer Stock [Final] Volume for 50ml
1M Tris, pH 8.0 im 10mM 500ul
500mM EDTA 0.5M imM 100pl
10% SDS 10% 1.00% 5mi
dH20 44.35ml
Total 50ml
Proteinase K Mix

Proteinase K Mix 1 Sample 10 Samples

1X TE 140ul 1.4ml

10 mg/ml Glycogen 3ul 30ul

Proteinase K 20mg/ml 74l 70ul

Total 150ul 1.5ul
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