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ORIGINAL RESEARCH

Genomic Priming of the Antisecretory Response to
Estrogen in Rat Distal Colon throughout the
Estrous Cycle

Fiona O'Mahony, Rodrigo Alzamora, Ho-Lam Chung, Warren Thomas,
and Brian J. Harvey

Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital,
Dublin 9, Ireland

The secretion of Cl~ across distal colonic crypt cells provides the driving force for the movement of
fluid into the luminal space. 17B-Estradiol (E2) produces a rapid and sustained reduction in secretion
in females, which is dependent on the novel protein kinase C§ (PKCS) isozyme and PKA isoform |
targeting of KCNQ1 channels. This sexual dimorphism in the E2 response is associated with a higher
expression level of PKC3 in female compared with the male tissue. The present study revealed the
antisecretory response is regulated throughout the female reproductive (estrous) cycle and is primed
by genomic regulation of the kinases. E2 (1-10 nm) decreased cAMP-dependent secretion in colonic
epithelia during the estrus, metestrus, and diestrus stages. A weak inhibition of secretion was dem-
onstrated in the proestrus stage. The expression levels of PKC5 and PKA fluctuated throughout the
estrous cycle and correlated with the potency of the antisecretory effect of E2. The expression of PKC8
and PKA were up-regulated by estrogen at a transcriptional level via a PKC5-MAPK-cAMP response
element-binding protein-regulated pathway indicating a genomic priming of the antisecretory re-
sponse. PKC8 was activated by the membrane-impermeant E2-BSA, and this response was inhibited by
the estrogen receptor antagonist ICl 182,780. The 66-kDa estrogen receptor-« isoform was present at
the plasma membrane of female colonic crypt cells with a lower abundance found in male colonic
crypts. The study demonstrates estrogen regulation of intestinal secretion both at a rapid and tran-
scriptional level, demonstrating an interdependent relationship between both nongenomic and

genomic hormone responses. (Molecular Endocrinology 23: 1885-1899, 2009)

he absorption and secretion of salt and water is a

major physiological role of the large intestine. Estro-
gen is known to be a salt-retaining steroid hormone in
many tissues. Clinically, salt and water retention is ob-
served during high estrogenic states (1). The synthetic
derivative of estradiol, ethinylestradiol, which is found in
oral contraceptives, hormone replacement therapy, and
the morning after pill, has been demonstrated to cause
retention of salt and water in the female body (2). For
many years, it has been recognized that cyclical changes in
the levels of ovarian hormone secretions effect whole-
body water and electrolyte homeostasis (3, 4). The kid-
neys, lungs, and large intestine are the major regulators of
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whole-body water and salt balance. Previously, these or-
gans were not recognized as being targeted by circulating
sex steroids. It is now known that estrogen can influence
Na™ retention in all three tissues (5-7). Certain phases of
the reproductive cycle have been implicated in influencing
intestinal physiology in three ways: function, cell prolif-
eration/profile, and electrolyte and fluid movement. In
addition, differences in the colonic transit time of the feces
between phases of the menstrual cycle have been docu-
mented and in particular a slowing in the luteal phase due
to less fluid content (8, 9). The luteal phase of the men-
strual cycle occurs after ovulation lasting from 10-16 d
and is referred to as the window of implantation. The

Abbreviations: CRE, cAMP response element; CREB, CRE-binding protein; DAPI, 4’,6-
diamidino-2-phenylindole; E2, 17B-estradiol; ERe, estrogen receptor-«; MEK, MAPK ki-
nase; PKACI, protein kinase A catalytic subunit isoform I; PKCS, protein kinase C§; gRT,
quantitative real-time; WGA, wheat germ agglutinin.
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estrogen peak occurs previous to the luteal phase during
ovulation. The uterus continues to expand throughout
this phase, which involves retention of bodily fluid (10)
and fluid expansion in the endometrium (11). Given the
impact that high-estrogen states has on whole-body fluid
volume and uterine swelling, it is surprising so little is
known of the molecular mechanisms for estrogen effects
on fluid and electrolyte transport in the body and, in
particular, the intestine. It is possible that the regulation
of Cl™ secretion by estrogen in the distal colon and the
components of the molecular mechanism involved may
vary depending on the hormonal background of the
female.

Cl™ secretion in the distal colon can be up-regulated by
two distinct mechanisms: an increase in intracellular
Ca®* (12) or cAMP activity (13). Cl~ enters the cell across
the basolateral membrane by cotransport with K™ and
Na™. Cl™ is then secreted via CFTR channels at the apical
membrane and other CI™ channels. A basolateral K* con-
ductance maintains the favorable negative membrane po-
tential to drive Cl™ electrodiffusion into the lumen. The
major K" channels providing the route for K" recycling
are cAMP-dependent KCNQ1 channels and Ca®*-acti-
vated KCNN4 channels. In human colonic tissue, it has
been demonstrated that blocking basolateral K™ activity
decreases forskolin-induced Cl™ secretion (14). Similarly,
pretreatment of colonic tissue with 178-estradiol (E2)
(0.1-100 nm) significantly reduced forskolin-stimulated
Cl™ secretion (7). We have recently demonstrated that the
E2 inhibition of secretion in rat distal colonic epithelia is
female sex specific (15). The mechanism was shown to in-
volve protein kinase C8 (PKC8) and PKA isoform I-depen-
dent modulation of KCNQT1 channel activity.

The genomic action of estrogen involves binding of the
hormone to the cytosolic estrogen receptor-a (ER«) fol-
lowed by translocation of this complex to the nucleus
whereupon it binds the estrogen response element induc-
ing transcription. It is known that rapid actions of E2 may
prime gene transcription via the activation of second mes-
sengers, which in turn target transcription factors. The
cAMP response element (CRE)-binding protein (CREB)
was found in many tissues to be phosphorylated in re-
sponse to PKA and MAPK activation by estrogen (16).
Activated CREB binds to the CRE found in the promoter
region of many genes. The outcome of CREB activation
and binding is an increase/decrease in the transcription of
certain genes. Upon binding to the CRE, the CREB-bind-
ing protein is recruited and coactivates CREB. Binding of
the CREB-binding protein to the CREB-DNA complex is
enhanced by further binding of the steroid coactivator
receptor 1 (SRC1) in the case of steroid receptor-depen-
dent transcription (17). Steroid receptor-independent ac-

Estrous Cycle-Dependent E2 Action in Distal Colon

Mol Endocrinol, November 2009, 23(11):1885-1899

tivation of this transcription factor occurs in response to
a wide variety of extracellular signals such as growth hor-
mones, steroid hormones, and neurotransmitters. Rapid
CREB phosphorylation by estrogen independent of the
classical receptor has previously been reported (18). Prim-
ing of the genomic response during the rapid nongenomic
phase of action of steroid hormones and transcriptional
regulation of the nongenomic responses are hot topics in
endocrinology. Cross talk between the rapid nongenomic
and genomic actions of estrogen occurring via membrane
ERa, protein kinases, and modulation of the CREB tran-
scription factor was investigated in this paper.

Results

The potency of E2 inhibition of cAMP-dependent
Cl~ secretion in female rat colonic epithelia varies
throughout the estrous cycle

We have previously demonstrated that E2 inhibits
cAMP-dependent ClI~ secretion via a PKC8/PKA signal-
ing pathway (15). Basolateral addition of heat-stable en-
terotoxin (STa) (E.Coli, potent activator of cAMP-depen-
dent secretion) (1 pg/ml) induced an instantaneous and
sustained increase (100%) in short circuit current (I5c).
E2 (10 nMm) reduced the STa effect on I with maximal
inhibition of secretion observed at estrus, metestrus, and
diestrus (percent secretion: estrus, 57 * 4%; metestrus,
60 * 3%; diestrus, 57 = 4%;n = §; P < 0.001; Fig. 1A).
The E2 effect on secretion at proestrus was insignificant
and comparable to that of the male tissue (percent secre-
tion: proestrus, 87 = 5%; male, 101 = 7%; Fig. 1A).
Inhibition of secretion in proestrus became significant at
supraphysiological levels of E2 (percent secretion: 100 nm
E2,70 = 3%;n = 5; P < 0.001). No effects upon secre-
tion were noted with the addition of the estrogen vehicle
carrier MeOH (data not shown). These results demon-
strate the antisecretory effect of E2 is estrous cycle
dependent.

Estrous cycle differences in PKA activation in
response to E2 in female rat distal colonic crypts

Isolated female rat distal colonic crypts from each stage of
the cycle were exposed to E2 (10 nMm) or equivalent vehicle
(0.01%) for the duration of 2, 5, and 15 min. Total lysates
were prepared and analyzed using the PepTag assay for
the nonradioactive detection of cAMP-dependent pro-
tein. Differences were recorded as fold values of treated
over control.

PKA was activated in female distal colonic crypts at the
estrus stage in response to E2 at 5 min (2.8 = 0.4-fold
higher, n = §; P < 0.001; Fig. 1B). In contrast, PKA was
not activated at the proestrus stage in response to E2 (n =
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FIG. 1. Antisecretory effect of E2 on cAMP-induced CI~ secretion is
estrous cycle dependent and is primed by differential activation of PKA
throughout the cycle. A, Representative recording of the effect of E2
(0.1-100 nm) on heat-stable enterotoxin (STa)-induced (1 wg/ml) short-
circuit current (/s¢) in male and female rat colonic epithelia. The female
tissue was obtained at each stage of the estrous cycle. Male tissue was
used as a control in this paper because a previous report demonstrates a
lack of inhibition (15). Colonic mucosas were treated with the secretory
agent basolaterally, and E2 was added at the peak of the response. B,
Representative image of PKA phosphorylation of an F-Kemptide PepTag in
cellular extracts from female rat distal colonic crypts at each stage of the
estrous cycle and male tissue in response to E2 (10 nm). CTL, Control. The
graphs represent densitometric analysis at specific time points of E2
treatment. Values are given as fold changes in PKA phosphorylation of the
F-Kemptide PepTag for all samples. Values are displayed as * sem (n = 5
for A; n = 4 for B). *, P < 0.05; ***, P < 0.001.

6; P > 0.05; Fig. 1B). The kinetics of PKA activation at
metestrus (Fig. 1B) was similar to that of estrus. During

diestrus, the activation of PKA was more rapid and sus-
tained (15 min, 3.1 = 0.7-fold higher, n = 3; P < 0.001;

mend.endojournals.org 1887

Fig. 1B). Thus, PKA activation in response to estrogen is
dependent on the stage of the estrous cycle.

Estrous cycle dependence of PKA and PKCo
basal expression

Untreated cellular protein extracts of isolated rat distal
colonic crypts at each stage of the estrous cycle were pre-
pared, quantified, and subjected to Western blot analysis
and probed using specific antibodies to endogenous levels
of PKA catalytic subunit isoform I (PKACI) and PKCSé.
The expression levels were normalized for loading differ-
ences by probing for B-actin. In all cases, the differences
were expressed as densometric values (pixel intensity) for
each stage of the estrous cycle.

Basal expression amounts of PKC8 increased throughout
the reproductive cycle with a peak in expression at the
diestrus stage (proestrus vs. diestrus, 5.1 * 1.5-fold higher,
n = 4; P < 0.001) (further exposure of autoradiographic
film demonstrated expression in female proestrus, not
shown) (Fig. 2A). Basal expression amounts of PKACI in-
creased throughout the cycle, also with a peak in expres-
sion at the diestrus stage (proestrus vs. diestrus, 1.9 =
0.2-fold higher, n = 3; P < 0.01; Fig. 2B). The estrous
cycle changes in protein kinase expression after the E2
peak in proestrus indicate estrogenic genomic regulation
of expression levels.

CREB is expressed in female distal colonic crypts,
and the expression levels are regulated during the
estrous cycle

To date, the expression of CREB has not been shown in
the rat distal colonic epithelia and expression was con-
firmed by RT-PCR using gene-specific primers in both
male and female tissues (data not shown).

A marked estrous cycle difference in basal protein ex-
pression was demonstrated. The expression of CREB was
low (further exposure of autoradiographic film demon-
strated expression in male and female proestrus, not
shown) at the proestrus stage (proestrus vs. estrus, 2 *
0.2-fold higher,n = 4; P < 0.05; Fig. 3). CREB expression
was maximal at metestrus (estrus vs. metestrus, 2.6 *
0.2-fold higher, n = 4; P < 0.001). CREB basal expres-
sion levels are regulated throughout the estrous cycle in
rat distal colonic epithelia, indicating plasticity in the
transcriptional capacity of the female colonic cells.

CREB is rapidly phosphorylated in response to E2
Colonic crypts at the estrus stage of the cycle were
isolated from female rats and adhered to glass slides. Im-
munofluorescent staining was performed to stain for
phospho-CREB (Ser133) followed by a 4’,6-diamidino-
2-phenylindole (DAPI) counterstain. DAPI stains DNA
and was used to track the phosphorylation events of
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strate that estrogen promotes CREB
phosphorylation within the vicinity of
the DNA.

P44 MAPK is rapidly

phosphorylated in response to E2

via a PKCo-dependent pathway
P42 and P44 MAPK activity was as-
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sessed by measuring phosphorylation
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CREB in the nucleus. After incubation with E2 for 2 min,
the intensity of the phospho-CREB signal increased, indi-
cating the induction of CREB phosphorylation (Fig. 4A).
In colonic crypt cells, the nucleus resides close to the
basolateral membrane. The CREB phosphorylation
was located toward the basolateral side of the cells and
when combined with the nuclear-specific DAPI stain, the
merged image indicated early nuclear localization of
phospho-CREB. The phosphorylation of CREB occurred
throughout the pole of the crypt. The phosphorylation of
CREB in the nuclei of crypt cells treated with E2 was
detected within 2 min, and the proportion of nuclei with
detectable phospho-CREB increased after 5 min (Fig. 4B).
Before E2 treatment, the phospho-CREB signal was weak
and diffuse around the DNA signal. These results demon-

-— -“ Total PKACI
5102 — R————— i

Diestrus

FIG. 2. The expression levels of PKC8 and PKACI increases throughout the estrous cycle after
proestrus. The antisecretory effect of E2 (10 nwm) is related to the expression levels of both
kinases in the colonic tissue. A, Inhibitory effect of E2 on heat-stable enterotoxin (STa)-
induced (1 wg/ml) CI~ secretion in colonic mucosa at each stage of the estrous cycle (bar
graph) compared with PKC§ protein levels (/ine graph). B, Inhibitory effect of E2 on heat-
stable enterotoxin-induced (1 wg/ml) CI~ secretion in colonic mucosa at each stage of the
estrous cycle (bar graph) compared with PKACI protein levels (line graph).The figures show
representative Western blots of the kinases. Values on the graphs are given as a mean fold
increase compared with proestrus samples. Values are displayed as mean + sem (n = 4 for A;
n = 3forB). *, P<0.05; **, P < 0.01; ***, P < 0.001. a.u., Arbitrary units; /sc, short-circuit

a highly similar amino acid sequence
(19). The differential activation of the
P42 and P44 MAPK isoforms may in-
crease the specificity of the signaling
pathway. Both P42 and P44 share a
common spatial distribution and upon
activation translocate together to the
nucleus (20). It has been demonstrated
that these kinases may also work sepa-
rately in some tissues and have inde-
pendent functions (21).

Pretreatment of colonic crypts with
the PKC8-specific inhibitor rottlerin
(10 mm) (22) blocked the estrogen ac-
tivation of P44 MAPK activity (0.8 =
0.1-fold higher, n = 3; P > 0.05; Fig.
5B). This result demonstrates the sequence of activation
of PKC8 and P44 MAPK in female colonic crypts in re-
sponse to E2. In addition to its function in the activation of
the rapid antisecretory mechanism, PKC3 is also an essential
signaling intermediate for activating P44 MAPK, a known
regulator of transcription.

CREB phosphorylation in response to E2 is MAPK
and PKA dependent

Colonic crypts were isolated at the estrus stage from
female rats and adhered to glass slides. Immunofluores-
cent staining was performed for phospho-CREB (Ser133)
followed by a DAPI counterstain. Again, after incubation
with E2 (10 nm) for 5 min, the intensity of the phospho-
CREB signal increased indicating phosphorylation of CREB
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PKACI translocates to the nucleus
region in response to E2

To confirm the translocation of
PKA to the nucleus, colonic crypts
were stained for PKA and analyzed
using confocal microscopy. Colonic
crypts were isolated at the estrus stage
of the cycle. After incubation with E2
for 2 min, the intensity of the PKA sig-
nal at the edge of the nuclear signal was
increased (Fig. 7B). It was demon-
strated to be inside the nucleus as the
merged image (yellow) demonstrates
the kinase to be within the vicinity of
the DNA signal. This would allow PKA
to also directly phosphorylate CREB in

(n=3). **, P<0.01; ***, P < 0.001.

(Fig. 6). Pretreatment with PD 98059 (25 um), a MAPK
kinase (MEK)-1 inhibitor (23), blocked the phosphoryla-
tion of CREB at Ser133. This result shows that the estro-
gen-induced phosphorylation of CREB occurs via a P44
MAPK-dependent pathway. PKA is a common regulator
of CREB phosphorylation. We have previously shown
that PKA is rapidly phosphorylated in response to E2 in a
PKC8-dependent manner in female colonic crypts. We
investigated a possible involvement of PKA in the CREB
transcriptional pathway. Pretreatment of colonic crypts
with H89 (10 wm), a specific PKA inhibitor (24), blocked
the phosphorylation of CREB at Ser133. The rapid CREB
phosphorylation in response to E2 is P44 MAPK and PKA
dependent.

Phosphorylated MAPK translocates to the nuclei in
response to E2

To confirm the translocation of phospho-MAPK to the
nucleus, colonic crypts were stained for phospho-MAPK
and analyzed using confocal microscopy. Colonic crypts
at the estrus stage of the cycle were isolated from female
rats, adhered to glass slides, and subjected to immunoflu-
orescent staining. After incubation with E2 for 2 and 5
min, the intensity of the phospho-MAPK signal increased,
indicating the induction of MAPK phosphorylation (Fig.
7A). An increase in the level of phospho-MAPK was ob-
served in the nucleus, demonstrating that phospho-
MAPK rapidly translocates to the nucleus upon estrogen
treatment. The P44 isoform was immunoprecipitated
from estrogen-treated colonic crypts, and Western blot
analysis was used to blot for associated CREB. P44
MAPK associated with the CREB transcription factor at 5
min, and the association was transient (1.8 * 0.2-fold
higher, n = 3; P < 0.01; blot inset, Fig. 7A).

addition to MAPK. This dual regula-

tion of CREB by both MAPK and PKA

concurrently has previously been doc-
umented (25, 26), increasing the level of CREB phosphor-
ylation. This translocation was blocked by the addition of
the MEK-1 inhibitor PD 98059 indicating that MAPK
recruits PKA in the regulation of CREB.

E2 increases the mRNA levels of PKC3, PKA
isoform |, and CREB via a MAPK/PKA pathway

In a previous study, it was demonstrated that chronic
exposure to chronic E2 (10 nm) dramatically increased
transcription of PKC8 mRNA in colonic crypts isolated
from female rats (15). This response was absent in the
male. In the present study, total RNA was extracted
from female colonic crypts at estrus. Specific primers to
PKCS8, PKACI, PKARI, CREB, and B-actin were syn-
thesized (MWG-Biotech, London, UK). The PKA iso-
form I has previously been shown to be the isoform
activated in the rapid estrogen signaling pathway in rat
colonic tissue (15, 27). Expression differences in the
protein kinase levels were demonstrated in this study,
and we investigated whether mRNA expression was
also regulated by estrogen.

E2 (10 nm) induced an up-regulation of mRNA levels
for all the signaling components studied: PKCS8 (5 * 1.4-
fold higher,n = 4; P < 0.01), PKAClI« (6 * 2-fold higher,
n=4;P <0.01),and CREB (1.5 = 0.06-fold higher,n =
4; P < 0.05) using quantitative real-time (qRT)-PCR
analysis (Fig. 8, A, B, and D). No change in mRNA ex-
pression levels were observed for PKACIB (1 = 0.005-
fold higher, n = 4; P > 0.035), indicating that E2 specifi-
cally regulates the PKACla subtype in female rat distal
colon. The up-regulation of PKC8, PKACla, and CREB
was blocked by pretreatment with PKA and MAPK
inhibitors. The inhibitory data support the involvement
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E2-induced rapid kinase signaling
and transcriptional responses
are transduced via a
Nuclei membrane-associated ERa

We investigated whether the phos-

phorylation of PKCS in response to E2
occurred via a membrane-bound ERa
protein. We have previously reported the
P-CREB . phosphorylation of PKCS§ at Ser643 in

Serl33 ' response to E2 (15). The impeded ligand
form of estrogen E2-BSA (10 nm) in-
duced rapid (5 min) phosphorylation of
PKC3 (4 = 0.3-fold higher, n = 3; P <
0.001) (Fig. 9A). The membrane-imper-
meant E2-BSA (10 nm) stimulated PKCS
phosphorylation comparable to uncon-
jugated E2. The phosphorylation of
PKC8 was inhibited by pretreatment
with the ER inhibitors ICI 182,780 (1
uM) and tamoxifen (10 um). To deter-
mine whether the transcriptional re-
sponses of E2 were via a membrane ER,
we investigated whether E2-BSA-in-
duced up-regulation of PKC8 mRNA.
E2-BSA both at 5 and 10 nMm induced an
increase in the level of PKC3 mRNA, in-
dicating regulation via a membrane ER
(5 nm E2, 1.6 = 0.3-fold higher; 10 nm
E2, 2.2 + 0.2-fold higher; n = 2; Fig.
9B). Male and female colonic crypt
samples were fractionated, and the
plasma membrane was extracted. The
Merge . : quality of the plasma membrane frac-
‘ \ . tion was checked by immunoblotting
using the Na*K* ATPase as a marker
(Fig. 9C). The level of detectable ER«
66-kDa protein at the plasma mem-

) rapicly ind —— f -~ I ot brane was low in the male compared
FIG. 4. E2 (10 nm) rapidly induces phosphorylation of CREB in female rat colonic crypts isolate . .

at the estrus stage. A, Isolated colonic crypts were adhered to glass slides, treated as required, and W¥th the female fraction where the pro-
fixed in 4% paraformaldehyde followed by permeabilization in 0.2% Triton X-100 in 1 PBS. tein was present at a level comparable
Phosth—CREB (E—CREB) was stained usinglan antibody to Ser133. The slides were mourjted using to that of a whole-cell lysate prepara-
VectaShield media containing the DNA stain DAPI. A single (xy) plane through the colonic crypt . ¢ 1l . h
structure is shown using an x40 oil objective. B, Further magnification using a X63 oil objective tion of MCF-7 cells (Fig. 9C). The
was carried out. Nuclei at the base (bottom) of the crypt were imaged again using a single (xy) truncated 46-kDa version of ERa was
plane through the colonic crypt. Red shows the nuclei staining, and the green shows the phospho- : _
CREB staining. The merged yellow images indicate that CREB was phosphorylated in the vicinity of n‘ot present 1n .plasma membrane frac
the DNA. Arrow indicates an area of CREB phosphorylation. CTL, Control; E2, E2 for 2 min; E5, E2  tions of colonic crypts from males or
for 5 min; VEH2, vehicle for 2 min; VEHS, vehicle for 5 min. Each treatment was examined in three  females (Fig. 9C). Whole-cell lysate
rats with five to seven crypts for each treatment per rat. Phosphorylation of CREB in the nuclei of
vehicle-treated cells did not increase above basal levels. Scale bar, 20 um (A) and 5 um (B).

B

Nuclel

P-CREB

Serl33

analysis showed a very low level of 46-
kDa ERa (data not shown). Isolated
for the CREB transcription factor in driving the expres- female colonic crypts at the estrus stage
sion of the signaling kinases at an RNA level. At were subjected to immunofluorescence and confocal
present, there is no significant inhibitor of the CREB  analysis to determine location of the receptor and further
transcription factor. confirm that ERa is membrane bound in distal colonic
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FIG. 5. P44 MAPK is rapidly activated in response to E2 (10 nw) in female rat distal colonic crypts
and is PKC8 dependent. A, Representative blot of P44 MAPK phosphorylation levels at Thr202/
Tyr204 in cellular extracts from female rat distal colonic crypts at the estrous cycle. P-P42,
Phospho-P42; P-P44, phospho-P42. B, Rottlerin (10 um) prevented the activation of P44 MAPK
activation at 5 min. The graphs represent densitometric analysis at specific time points of E2
treatment. CTL, Control. Values are given as fold changes in P44/P42 MAPK
phosphorylation (activity) for colonic crypt samples. Values are displayed as mean * sem

(n =3 for AandB). **, P < 0.01; ***, P < 0.001.

crypts. Wheat germ agglutinin (WGA) was used to stain
for plasma membrane, and ER« association at the baso-
lateral membrane was investigated. ERa was detected
and localized at the basolateral plasma membrane. Asso-
ciation of the receptor with the plasma membrane is
apparent from the merged image of plasma membrane
and ER« (Fig. 9D). This is the first report of a mem-
brane-associated full-length ER« in the distal colon.
Figure 9E demonstrates estrous cycle differences in 66-
kDa ERa in whole-cell lysates from female colonic

crypts.
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Discussion

E2 induces an antisecretory response
in the female rat distal colon (15).
The antisecretory action of E2 is es-
trous cycle dependent, indicating the
response is differentially primed de-
pending on the level of sex steroids in
the blood plasma. Reproductive cycle
regulation of cross-organ interactions
has been reported between the repro-
ductive, gastrointestinal, and urinary
tracts. A previous study has shown a
level of functional communication be-
tween the uterus, colon, and bladder
(28). In another study, inflammation of
the colon has been demonstrated to af-
fect uterine contractility and in turn in-
flammation is also affected by the es-
trous cycle (29).

The endometrial implantation win-
dow is associated with expansion of
the extracellular fluid volume. Here we
show that the fluctuating hormone lev-
els throughout the estrous cycle are
correlated with changes in the poten-
tial for estrogen to inhibit secretion in
the colon.

| Thr204/Tyr202

Thr204/Tyr202 . .
We have previously described the

molecular mechanism of estrogen in-
hibition of Cl™ secretion in the female
distal colon (15). The antisecretory
mechanism involves the rapid and
transient up-regulation of PKC8/PKA
activity. It was demonstrated that
PKC8 phosphorylates PKA, which in
turn associates with the KCNQ1 chan-
nel inducing serine phosphorylation of
the channel. Phosphorylation of the
KCNQ1 channel results in a decrease
in basolateral K™ recycling, which re-
duces the electrical driving force for
Cl™ secretion. The key signaling factor underlying the
sexual dimorphism in E2 action is the differential regula-
tion of PKCS at a transcriptional level. PKC8 expression
was higher in the female compared with the male. The
present study identified key estrous cycle-dependent
changes in the expression of PKC8 and PKA both at tran-
script and protein levels.

There are few reports in the literature on estradiol reg-
ulation of kinase expression throughout the reproductive
cycle. Estrogen has previously been shown to regulate
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FIG. 6. Rapid E2-induced phosphorylation of CREB in female rat colonic crypts is via a
MAPK/PKA-dependent pathway. Isolated colonic crypts were adhered to glass slides, treated
as required, and fixed in 4% paraformaldehyde followed by permeabilization in 0.2% Triton
X-100 in 1X PBS. Phospho-CREB (P-CREB) was stained using an antibody to Ser133. The
slides were mounted using VectaShield media containing the DNA stain DAPI. A single (xy)
plane through the colonic crypt structure is shown. Image was obtained using a x40 oil
objective. Pretreatment of the crypts with a MEK-1 inhibitor (PD 98059, 25 um) and a PKA
inhibitor (H89, 10 um) blocked the 5-min E2-induced phosphorylation of CREB. Red shows
the nuclei staining, and green shows the phospho-CREB staining. The merged yellow images
indicate that CREB phosphorylated in the vicinity of the DNA. CTL, Control; E2, E2 for 2 min;
VEH, vehicle. Each treatment was examined in three rats with five to seven crypts for each

treatment per rat. Scale bar, 20 um.

PKC3 in the rat ovary where PKC8 increased during preg-
nancy and also fluctuated at different stages of luteal dif-
ferentiation (30). A previous study in uterine tissue dem-
onstrated that PKB was regulated by the sex steroid
hormones, and expression fluctuated throughout the re-
productive cycle (31). Here we show both PKCS and
PKACI expression levels varied throughout the estrous
cycle. PKC8 and PKACI are the major signaling compo-
nents recruited by estrogen in the antisecretory response.
The increased expression of PKC8 and PKACI from
proestrus toward the diestrus stage was associated with
increased potency of the estrogen inhibition of Cl™ secre-
tion at diestrus. PKC8 and PKACI expression was signif-
icantly reduced in proestrus and correlated with minimal
inhibition of Cl™ secretion by estrogen. This is the first re-
port of estrous cycle-dependent regulation of protein kinase
expression in colonic tissue. It appears that the expression
level of the kinases is the rate-limiting factor in determining
the potency of the antisecretory response to estrogen.

The rapid estrogen activation of PKA by PKC8 and
subsequent association of PKA with the KCNQ1 channel

Estrous Cycle-Dependent E2 Action in Distal Colon

E2 + HB9
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has been shown to be PKC8 depen-
dent in colonic crypts (15). PKA acti-
vation appears to be the final step in
the inhibition of KCNQ1 channel ac-
tivity. Indeed, PKA has previously
been shown to directly interact with
and phosphorylate the channel at
Ser27 (32), further indicating it is the
last step in the signaling cascade that
impacts on the channel. We therefore
investigated PKA activation as the end-
point of the rapid antisecretory path-
way and whether this activation was
also dependent on the stage of the es-
trous cycle. The results indicated that
the timing and intensity of PKA activa-
tion by estrogen is dependent on the
estrous cycle stage. The failure of estro-
gen to produce PKA activation at
proestrus correlated with minimal in-
hibition of secretion. Conversely, the
maximal PKA activation at diestrus
correlated with maximal inhibition of
secretion. We hypothesize that the lack
of kinase activation by estrogen at
proestrus may be due to reduced basal
expression levels of PKC8 and PKA. It
has previously been determined that
the lack of estrogen effects on Cl™ se-
cretion in the male colonic mucosa is
due to the low expression of PKC8

gl =
~ oy

compared with the high level in the fe-
male tissue (15). PKA activity has been shown to be reg-
ulated by the reproductive cycle in the hypothalamus
(33). The largest cAMP-induced PKA activation in the
hypothalamus was observed during diestrus, similar to
the sustained diestrus activation demonstrated in this
study. A recent study showed that estrogen-induced ac-
celeration of the oviductal transport of the oocytes in
cycling rats was dependent on a successive activation of
nongenomic PKA signaling pathways (34). The latter
study and the estrous cycle data presented in this paper
demonstrate a physiological role for rapid nongenomic
PKA activation. The potential for estrogen to inhibit in-
testinal CI™ secretion is dependent on a combined effect
of enhanced PKC§ and PKA expression and rapid activa-
tion of the kinases.

The differences in kinase expression during the estrous
cycle indicate the levels are regulated at a genomic level by
the sex steroid hormones. It was hypothesized that in addi-
tion to causing the rapid antisecretory response by inhibiting
KCNQT1 channels, estrogen may also induce a rapid tran-
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FIG. 7. MAPK and PKA nuclear localization to the nucleus in response to 10 nm E2. A,
Isolated colonic crypts were adhered to glass slides, treated as required, and fixed in 4%
paraformaldehyde followed by permeabilization in 0.2% Triton X-100 in 1X PBS. The slides
were mounted using VectaShield media containing the DNA stain DAPI. Images were
obtained using an X63 oil objective through a single (xy) plane. Phospho-P42 P44 MAPK
was stained using an antibody to Thr202/Tyr204. Red shows the nuclei staining, and
green shows the phospho-P42/P44 (P-P42 P44) MAPK staining. The merged yellow
images indicate that MAPK was phosphorylated in the nucleus. The P44 MAPK protein
was immunoprecipitated. Western blot analysis was used to detect CREB association after
E2 treatment. A representative blot is shown. The bar graph shows fold differences over
control (n = 3). B, PKA was detected using an antibody to total PKA. Red indicates DAPI,
and green indicates PKA. Merged yellow demonstrates perinuclear localization of PKA.
CTL, Control; E2, E2 for 2 min; E5, E2 for 5 min; VEH2 (V2), vehicle for 2 min; V5, vehicle
for 5 min. Values in the graph are given as fold changes in CREB and MAPK association
for colonic crypt samples. Values are displayed as mean = sem (n = 3). **, P < 0.01.
Confocal images for each were obtained from three rats with five to seven crypts for each
treatment per rat. Scale bar, 5 um.
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scriptional pathway to induce expres-
sion of the kinases required to drive the
antisecretory response throughout the
reproductive cycle. Cross talk between
rapid nongenomic and genomic ac-
tions of steroid hormones in epithelia is
still a mystery. Estrogen may rapidly
induce alterations in gene transcription
as a result of the activation of second
messengers, rather than binding to the
classical receptor, and in turn modu-
late certain transcription factors. We
investigated whether the expression of
the CREB transcription factor was reg-
ulated throughout the estrous cycle.
Previous work has demonstrated a re-
productive cycle dependence of CREB
expression in human endometrium
(35) and in rat hypothalamic tissue
(36). We hypothesized that regulation
of protein kinase expression by estra-
diol throughout the estrous cycle
primes the rapid nongenomic antise-
cretory action of estrogen. Conversely,
the rapid protein kinase activation re-
sponses to estrogen also prime the
genomic transcriptional pathway. In
this way, estradiol works in a bidirec-
tional manner throughout the repro-
ductive cycle. The expression of CREB
was shown to be sex specific with ap-
proximately eight times more of the
protein expressed in the female tissue
in comparison with the male. Expres-
sion of CREB was also shown to be
regulated throughout the estrous cy-
cle. Expression of CREB was low to
absent at proestrus followed by a dra-
matic increase during estrus and a
maximal expression at the metestrus
stage. The estrous cycle modulation
of the regulation of CREB indicates
that the rapid phase of estrogen action
in the distal colon also regulates tran-
scription. Estrogen induced the phos-
phorylation of CREB and induction of
the expression of CREB itself, PKCS,
and PKA via a rapid MAPK-PKA sig-
naling pathway. P42 P44 MAPK is an
important regulator of transcription in
epithelial cells. Rapid sex-specific P42
P44 MAPK activation in response to
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FIG. 8. PKC$, PKA, and CREB transcription is regulated by E2 in female rat colonic crypts via
a PKA/MAPK-dependent pathway. Colonic crypts from male and female rats were treated
with E2 (10 nm) for 45 min. Total mRNA was extracted and converted into cDNA. PKC3 (A),
PKACIa (B), PKACIB (C), CREB (D), and B-actin cDNA was analyzed by qRT-PCR using specific
primers. E2 up-regulated the mRNA of PKC8, PKACla, and CREB. This up-regulation was
blocked by pretreatment with the MEK-1 inhibitor PD 98059 (25 wm) and the PKA inhibitor
H89 (10 wm). No change was noted for PKACIB mRNA levels. Values on the graphs are given
as mean fold increase compared with control samples. CTL, Control; E, E2; PD + E, PD 98059
plus E2. Values are displayed as mean = se (n = 4). *, P < 0.05; **, P < 0.01, between

control and treated values. au, Arbitrary units.

E2 has previously been demonstrated in female growth
plate chondrocytes (37). PKC is a known regulator of
cellular transcription, and PKC8 has been demonstrated
to induce transcription in bronchial epithelial cells via a
P42 P44 MAPK pathway (38). A more recent study in
uterine tissue demonstrated rapid E2 activation of P42
P44 MAPK via a PKC8-dependent pathway (39). Thus, a
positive feed-forward mechanism for CREB, PKC§, and
PKA expression is driven by rapid E2 activation of PKC8.
This is further evidence for dependence of a genomic re-
sponse on the rapid induction of kinase activity. P44
MAPK appears to be the signaling protein linking the
rapid nongenomic pathway to the genomic pathway. In
this study, MAPK is clearly seen to enter and pool within
the nucleus. PKA is also responsible for phosphorylating
CREB. PKA localizes just inside the nuclear envelope (as
seen with merged image of PKA and DAPI signal), and it
may phosphorylate CREB within this region. Rapid
CREB phosphorylation at Ser133 in response to estrogen
has previously been demonstrated to occur via both PKA
and MAPK concurrently. A previous study in testicular
tissue demonstrated rapid CREB phosphorylation via the
membrane ERe, leading to both P42 P44 MAPK and PKA
activation, which in turn both modulate the phosphory-
lation of CREB (blocked by PD 98059 and H89) (26).
Another study demonstrated cooperative effects between
PKA and MAPK in the phosphorylation of CREB at
Ser133 in the nucleus similar to this study (25).

Estrous Cycle-Dependent E2 Action in Distal Colon
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The distal colon was previously
thought not to be a target of estrogen
until the confirmation of ER expres-
sion (40). Increasing evidence suggests
that E2 acts via a membrane-bound ER
in many cell types (41-44). We have
provided evidence for membrane-
bound ERa involvement in transduc-
ing rapid E2 phosphorylation of PKCS.

PKACIa

PD+E2  H89+E2

R The expression of 66-kDa ERa was

low in male colonic tissue in compari-

son with female. We hypothesize that a

membrane-bound 66-kDa ERa is the

T nongenomic receptor transducing the

rapid antisecretory actions of E2 in
the female distal colon. This is the first
report of a gender difference in the ex-
pression of the membrane 66-kDa ER«a
protein. Plasma membrane preparations
demonstrated that ERa is present at the
plasma membrane to the basolateral side
of the cell (with an absence of the trun-
cated 46-kDa ER form) and showed a
higher abundance in the female in com-
parison with the male. Based on this observation, it appears
that a membrane-bound 66-kDa ERe is the nongenomic
receptor transducing the rapid actions of E2 in the female
distal colon.

The fact that the reproductive cycle regulates interre-
lated nongenomic and genomic actions in the intestine
further strengthens the case for a physiological impact of
rapid responses to sex steroid hormones. The results pre-
sented in this study clearly demonstrated the impact of the
reproductive cycle on the intestinal function in the female
both ata molecular level through the regulation of protein
expression and at a physiological level through the inhi-
bition of transepithelial Cl™ secretion. This is the first
report of the modulation of rapid responses to steroid
hormones throughout the estrous cycle in the gastrointes-
tinal tract. A previous report demonstrated that estrous
cycle differences in dopamine release from rat striatum
were primed by differential regulation of the level of cross
talk between acute and long-term effects of estrogen
through each phase of the cycle (45). In our study, the
rapid antisecretory action of E2 was primed throughout the
estrous cycle. In addition to the impact of sexual dimor-
phism on the rapid responses to steroid hormones, the work
reported in this paper has demonstrated the reproductive
cycle as a new physiological regulatory element in the rapid
responses to estrogen. The study also provides novel insights
into the molecular and cellular basis for fluid retention in the
female in high-estrogen states (Fig. 10).
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FIG. 9. Estrogen induces signaling and transcriptional responses in the female rat distal colonic crypt via a membrane-bound full-length
ERa. A, Colonic crypts from female rats at the estrus stage were treated with charcoal-stripped E2-BSA (10 nm) for 5 min. PKC8

phosphorylation was detected by Western blot analysis and a phospho-PKC8-specific antibody to Ser643. The increase in E2-BSA-induced
PKC& phosphorylation was blocked by pretreatment with the ERa antagonists ICI 182,780 (1 um) and tamoxifen (10 um). B, Colonic crypts
from female rats were treated with charcoal-stripped E2-BSA for 45 min. Total mRNA was extracted and converted into cDNA. PKCS and
B-actin cDNA was amplified by PCR using specific primers. E2-BSA (5 and 10 nm) up-regulated PKC8 mRNA. C, Plasma membrane extracts

from male and female rat distal colonic crypts were subjected to Western blot analysis, and total ERa was detected. A whole-cell MCF-7
lysate was used as a comparison for ERa sizes. Plasma membrane quality was determined by blotting for Na*K™* ATPase. C, Cytosol; M,
membrane. D, ERa is associated with the basolateral plasma membrane. Isolated colonic crypts were adhered to glass slides, treated as
required, and fixed in 4% paraformaldehyde followed by permeabilization in 0.2% Triton X-100 in 1X PBS. ERa was detected using an
antibody to the total protein. The plasma membrane was stained using WGA (1 wg/ml). The slides were mounted using VectaShield media.
A single (xy) plane through the colonic crypt structure is shown. The plasma membrane staining is shown in red, and the the ERa staining
shown in green. The merged yellow images indicate the association of ERa with the plasma membrane. Scale bar, 10 um. D, Whole-cell
lysate from female proestrus and estrus distal colon samples comparing expression of 66-kDa ERa. The figure shows representative Western
blots, agarose gels, and confocal images. Values on the graphs are given as a mean fold increase compared with control samples. Ap,
Apical; Bl, basolateral; CTL, Control; ICI, ICI 182,780; Tam, tamoxifen. Values are displayed as mean = se (A, C, D, and E,n = 3; B, n = 2).

**%x P < 0.001, between control and treated values.

Materials and Methods

Materials

Total PKC8 and total PKA catalytic subunit isoform I
(PKACI) antibodies from BD Transduction (Dorchester, UK).
Total CREB, phospho-CREB, total P42 P44 MAPK, and phos-
pho-P42 P44 MAPK were obtained from Cell Signaling Tech-
nologies (Beverly, MA). Total ERa antibody was from Santa
Cruz Biotechnology (Santa Cruz, CA). Total Na"K™" ATPase
was obtained from Abcam (Cambridge, UK). Antirabbit and
antimouse horseradish peroxidase-linked secondary antibodies
were from Sigma-Aldrich (Dublin, Ireland). Goat antirabbit and

goat antimouse conjugated to an Alexa 488-nm probe were
obtained from Invitrogen (Carlsbad, CA). VectaShield mount-
ing media with a DAPI nuclear stain was from Molecular Probes
(Eugene, OR). Plasma membrane staining was obtained using
WGA conjugated to Alexa 633 nm. The ECL plus chemilumines-
cent detection system was from Amersham Biosciences (Little
Chalfont, UK) and Bradford reagent from Bio-Rad (Hemel Hemp-
stead, UK). Chromanol 293B, ICI 182,780, and tamoxifen citrate
were obtained from Tocris (Bristol, UK). Rottlerin, PD 98059, and
HB89 were from Calbiochem (Nottingham, UK). All other reagents
were obtained from Sigma-Aldrich (Dublin, Ireland) or as stated in
the text. E2-BSA was obtained from Steraloids (Newport, RI).
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FIG. 10. Proposed model for signal transduction pathways activated by estrogen action in female distal colonic crypts. E2 stimulates PKC&
through a membrane ERa (66-kDa form). PKC8 activates both rapid nongenomic and genomic pathways. PKC8 triggers rapid phosphorylation of
PKA, and both kinases translocate to the C terminus of the KCNQ1 channel. Phosphorylation (P) of KCNQ1 Ser27 by PKA blocks channel activity
and in turn K* recycling, ultimately decreasing the potential for Cl~ secretion. In addition to inducing rapid antisecretory effects, estrogen-
activated PKCS§ stimulates P44 MAPK. P44 MAPK recruits PKA and translocates to the nucleus, whereupon PKA enters the cell but remains close to
the edge of the nucleus. MAPK enters and is seen to be throughout the nucleus. Both kinases phosphorylate the transcription factor CREB. PKA
and MAPK both phosphorylate CREB. Dual regulation of CREB by both kinases has previously been documented in other systems (25, 26).

Animals

Both male (~350 g) and female (~300 g) Sprague Dawley
rats from 8-12 wk old were used for all experiments. The fe-
males become sexually mature at about 35 wk, allowing for
determination of the estrous cycle (46). Circulating E2 levels in
the rat increase during proestrus and subsequently impact on the
following estrus stage followed by a decrease throughout
metestrus and diestrus (47, 48). The animals were maintained
ona 12-h light, 12-h dark cycle and were given ad libitum access
to food and water. Anesthetized rats were killed by cervical
dislocation. Cervical smears were obtained from female rats by
flushing the vaginal canal with Krebs solution, and the stage of
the estrous cycle was determined histologically as previously
described (49).

The distal colon was removed to below the pelvic rim. The
fecal contents were rinsed, and distal colonic crypts were iso-
lated as previously described (50). Isolations and treatments
were carried out at room temperature to avoid colonic crypt
disintegration (50, 51). Sheets of colonic mucosa were obtained
by blunt dissection for transepithelial transport measurements.
All procedures were approved by the Royal College of Surgeons
in Ireland Ethics Committee.

Transepithelial transport studies

Colonic epithelia was stripped from the muscle tissue and
placed on inserts exposing an area of 0.5 cm?. The inserts were
mounted in Ussing chambers (Physiologic Instruments, San
Diego, CA). Transepithelial potential difference was clamped to
0 mV using an EVC-4000 voltage-clamp apparatus (World Pre-

cision Instruments, Stevenage, UK). Transepithelial short-cir-
cuit current (Igc) was recorded using Ag-AgCl electrodes in 3
M KCl agar bridges. Both apical and basolateral baths were
filled with Krebs bicarbonate buffer (in mm): 120 NaCl, 25
NaHCOs, 3.3 KH,PO,, 0.8 K,HPO,, 1.2 MgCl,, 1.2 CaCl,,
10 glucose (pH 7.4). The chambers were maintained at 37 C
by heated water jackets and oxygenated with a 95% 0,/5%
CO, mixture. The colonic tissue preparations were allowed
to equilibrate for 30—45 min before commencing treatments.
The I was defined as positive for anion flow from the ba-
solateral to apical chamber and for cation flow in the oppo-
site direction.

Immunoprecipitation and Western blotting

After isolation, the distal colonic crypts were resuspended in
Krebs solution. The crypts were treated with the appropriate
drug for the indicated time points. After treatment, the samples
were lysed as previously described (15). Inmunoprecipitations
were carried out as previously described (15). The protein con-
tent of the supernatant was quantified by the Bradford method
(52). For all activation assays, 50 ug sample was combined with
2% Laemmli buffer, boiled at 95 C for 5 min, and spun at 12,000
rpm for 2 min. Western blot analysis was carried out as stan-
dard. Protein was transferred to polyvinylidene difluoride mem-
branes, blocked in 1X Tris-buffered saline with 1% Tween 20
and 5% nonfat dry milk for 1 h. Membranes were incubated
with the appropriate primary antibody overnight at 4 C and
incubated for 1 h at room temperature with the appropriate
secondary antibody. Membranes were washed in 1X Tris-
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buffered saline with 1% Tween 20 three times for 15 min.
Bands were detected using autoradiographic film and chemi-
luminescence. The membranes were stripped using a high-salt
stripping buffer (Promega, Southampton, UK) to obtain load-
ing levels of B-actin.

PKA activation assay

PKA activation was measured using a PepTag Assay for the
nonradioactive detection of cAMP-dependent protein kinase
(Promega) according to the manufacturer’s instructions with
minor modifications; 2.5 ul F-Kemptide PepTag and 2.5 ul
cAMP activator solution were added instead of 5 ul.

Immunofluorescence and confocal microscopy

Isolated female crypts were adhered to eight-well slides
(Nunc, Rochester, NY) using Cell-Tak (BD Biosciences, UK)
using the adsorption technique (according to the manufacturer’s
instructions). Adhered crypts were treated as required and
washed with ice-cold 1X PBS to halt the treatment. The cells
were fixed in 4% paraformaldehyde solution (dissolved at 70 C
in 1X PBS) at room temperature. The crypts were then perme-
abilized in 0.2% Triton X-100 in 1X PBS. The crypts were
rinsed in 1X PBS and incubated at room temperature for 15 min
in a 3% BSA blocking buffer to avoid nonspecific binding of
antibodies and fluorescent conjugates. After this, the antibody
solution (phospho-CREB, 1:100 dilution; phospho-MAPK P42
P44, 1:100 dilution; PKACI, 1:100 dilution; ERe, 1:100 dilu-
tion) was added in 2% BSA blocking buffer for 1 h at room
temperature. The crypts were washed twice in 0.2% BSA buffer,
and the rabbit secondary antibody (Alexa Fluor 488 conju-
gated) was added in a 2% BSA buffer. The cells were washed
three times with a 0.2% BSA solution and twice with 1X PBS.
The slides were then mounted in VectaShield (Vector Laborato-
ries, Burlingame, CA) with DAPI DNA stain. Single crypts were
imaged using a X40 oil objective on a Zeiss LSM 510 confocal
microscope. Detailed images of colonic crypt nuclei were ob-
tained using a X63 oil objective. The excitation wavelengths for
WGA, Alexa Fluor 488, and DAPI were 633, 488, and 345 nm,
respectively.

Total RNA preparation, RT-PCR analysis, and
real-time PCR analysis

RNA extracts were prepared from female rat colonic crypts
at the estrus stage of the estrous cycle using the QIAGEN
RNeasy kit (QIAGEN, Crawley, UK). Because the RNA was
from primary tissue, we carried out a genomic DNA treatment
as a precaution. Any contaminating genomic DNA was digested
using the DNA-free kit as per manufacturer’s instructions
(Ambion, Huntingdon, UK). Single-strand cDNA was synthe-
sized using the Improm II reverse transcriptase system (Pro-
mega). The synthesized cDNA was quantified at 260 nm and
corrected for loading differences in RT-PCR reaction mixes.
PKA isoform I has three catalytic subunits («, 8, and ) and two
regulatory subunits (« and 8). PKACIy and PKARIB were not
examined because these subunit isotypes are primarily ex-
pressed in nervous and adipose tissues. PKC8 (NM_133307;
forward, 5'-caccatcttccagaaagaacg-3'; reverse, 5'-cttgccatag-
gteeegttgttg-3'; product size, 352 bp), PKACla (X57986; for-
ward, §'-tcctttgggegagtgatge-3'; reverse, 5'-gegaagaagggeggg-
taac-3'; product size, 563 bp), PKACIB (D10770; forward, 5'-
cagatcgtgctaacatttgag-3'; reverse, S'-gtcatcgaagttgetggtatc-3';
product size, 543 bp), PKARIa« (NM_013181; forward, 5'-
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gcaagacagattcagagee-3';  reverse,  S'-ggttgcccattcattattg-3';
product size,393 bp), and CREB (NM_134443; forward, 5'-
agcccctgecatcaccact-3'; reverse, S'-tgetgettecctgttcttcattag-3';
product size, 409 bp) primers were designed using primer 3
analysis (http://frodo.wi.mit.edu/primer3/). GoTaq polymerase
mix from Promega was used in the amplification. Touchdown
PCR was used to amplify the cDNA for 25 cycles over an an-
nealing temperature range of 59-49 C in the case of PKACla,
PKACIB, PKARIq, and CREB. PKC8 was amplified over a
range of 65-55 C for 25 cycles. B-Actin (NM_031144; forward,
S'-cagtaatctecttctgeatec-3'; reverse, S'-actacctcatgaagatcctga-
3’; product size, 350 bp) was amplified for 25 cycles at an
annealing temperature of 52 C. Amplicons were analyzed on a
2% 1X Tris-acetate-EDTA agarose gel and imaged using a UV
light source. A 100-bp marker was employed to determine
whether the amplicons were the correct size. PCR analysis was
carried out using the RNA preparations as the template to en-
sure an absence of interfering genomic DNA. Real-time PCR
analysis was carried out using the Bio-Rad iCycler and SYBR
GreenER qPCR SuperMix (Invitrogen) according to manufac-
turer’s instructions. The PCR program was set up as described in
the SuperMix protocol (Invitrogen). A melting-curve analysis
was performed for all primer sets after PCR analysis to ensure
the absence of nonspecific amplicons and also primer-dimers. A
change in transcript levels was determined by the AAC, method.
B-Actin was used as an internal control.

Plasma membrane extraction

Plasma membrane was extracted using the Mem-PER eu-
karyotic membrane protein extraction kit from Promega. The
plasma membrane was extracted according to the kit’s instruc-
tions. The quality of extract was compared between cytosolic
fraction and membrane fraction by immunoblotting for the
plasma membrane marker Na*K™ ATPase.

Statistical and densitometric analysis

For the study, the data are presented as mean * SEM for a
series of the indicated number of experiments. Statistical anal-
ysis of the data was obtained by analysis using one-way
ANOVA and Tukeys post hoc test for multiple analysis of more
than two groups. Densitometric analysis of Western blots, PKA
assays, and RT-PCR images were performed using GeneTools
software (Syngene, Cambridge, UK).
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better elucidate the contribution of circadian rhythms to metabolism and disease.
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