Delays in the stroke thrombolysis pathway--identifying areas for improvement.

Linda Brewer  
*Royal College of Surgeons in Ireland*, lindabrewer@rcsi.ie

Chinedum Arize  
*Royal College of Surgeons in Ireland*

Joan McCormack  
*Royal College of Surgeons in Ireland*

David Williams  
*Royal College of Surgeons in Ireland*, davidwilliams@rcsi.ie

Citation


This Article is brought to you for free and open access by the Department of Geriatric and Stroke Medicine at e-publications@RCSI. It has been accepted for inclusion in Geriatric and Stroke Medicine Articles by an authorized administrator of e-publications@RCSI. For more information, please contact epubs@rcsi.ie.
Delays in the Stroke Thrombolysis Pathway - Identifying Areas for Improvement
Linda Brewer, Chinedum Arize, Joan McCormack, David Williams
Ir Med J. 2014 May;107(5):143-6
L Brewer, C Arize, J McCormack, D Williams
Beaumont Hospital, Beaumont, Dublin 9

Abstract
Despite international consensus on the benefits of thrombolysis for ischaemic stroke (IS), it remains underused. Guidelines now recommend a door-to-needle time of ≤60 minutes. We reviewed the rate and timeliness of thrombolysis for IS at our hospital. 323 stroke patients presented between January 2011 and April 2012. Thirty patients (10.6% of IS) were thrombolysed, mean age was 68.5 years (42 to 88) and 19 patients (63%) were male. Thirty-six patients (12.7% of IS) were not thrombolysed despite arriving within the time-window and symptom resolution was the commonest reason (15 patients; 42%). Despite most thrombolysed patients (42%) presenting to the Emergency Department during daytime working hours, there were delays at each step of the acute care pathway. The mean time for stroke team review was 23 minutes (5-50). The mean door-to-CT and the door-to-needle times were 60 minutes (25-95) and 92 minutes (46-130) respectively. In parallel with national stroke incentives, local audit can highlight barriers to uptake and efficiency within thrombolysis services.

Introduction
It is now almost two decades since the effectiveness of thrombolytic therapy for acute IS was first reported. Results from the NINDS-rtPA trial in 1995,1 data from large randomized thrombolysis trials2 along with a Cochrane review,3 have supported the use of thrombolysis early in the acute IS setting. However, clinical outcomes are time dependent, with those receiving treatment more rapidly having better outcomes in the long and short-term. Pooled analysis of landmark trials reported that although patients benefited from treatment for up to 4.5h, there was a drop in the odds of a favourable outcome by a factor of two with each 90-minute period time delay.4 Every effort is therefore needed to avoid delays in starting treatment.

Despite benefits, a limited proportion of eligible patients actually receive this treatment, with international reports documenting ongoing suboptimal rates(≤7%) even in well equipped centres.4,5 Delays in hospital presentation significantly contribute to this, but even when many IS patients are deemed eligible for thrombolysis, the actual rates of treatment can be relatively low.6,7 Consequently, there is growing interest in highlighting in-hospital obstacles that contribute to low treatment rates and the fragmentation of what should be a well-organized pathway of care from arrival at the hospital door to administration of therapy. Guidelines recommend a door-to-needle target time of ≤60 minutes,8,9 clearly requiring efficiency, including the rapid completion of clinical and imaging evaluation before initiating treatment in those without contra-indications. Evidence from the Get with the Guidelines-Stroke national US registry10 shows that less than one-third of acute IS patients who receive thrombolysis are actually treated within such guideline-recommended door-to-needle times. Consequently, the American Heart and Stroke Associations have launched ‘Target: Stroke Initiative’11 which includes multiple key best-practice strategies, and aims to achieve a door-to-needle-time of ≤60 minutes for at least 50% of IS patients. The effectiveness of implementing similar strategies has also been explored in Europe.12

This study aimed to review the thrombolysis service at Beaumont Hospital (BH) from January 2011 to April 2012 inclusive. We reviewed the rate of thrombolysis and analysed the times taken for medical review, radiological investigation and administration of thrombolysis amongst those eligible to receive such therapy. Reasons for withholding treatment in those who presented within the 4.5 hours treatment-window were also reviewed.

Methods
Beaumont is a 820-bed teaching hospital that provides emergency and acute care services to almost 300,000 people. The thrombolysis service is co-ordinated jointly by the Departments of Geriatric and Stroke Medicine and Neurology. A clear pathway of care outlines the steps that should be promptly undertaken from arrival of the patient with suspected stroke at the hospital, to imaging within the radiology department and administration of thrombolysis, where appropriate. In parallel, an education programme updates rotating medical staff within the ED and stroke service about this care pathway. The hospital stroke registry (for January 2011 to April 2012 inclusive) was reviewed. Two paper-based review proformas were designed for data collection: a ‘monthly proforma’ collected information on overall numbers of stroke patients that presented each month and a ‘thrombolysis’ proforma collected information on all thrombolysed patients during the study period. Patients’ electronic records and charts were reviewed for any relevant data unavailable within the stroke registry and details of relevant radiological investigations were accessed through the McKesson system.

Results
323 stroke patients presented over a sixteen-month period from January 2011 to April 2012 inclusive (Figure 1). Overall, 10.6% of all IS patients (30 patients) received IV thrombolytic therapy during the study timeframe, although rates of thrombolysis varied greatly from month to month (Figure 2).
Table 1: Documented risk factors and medications (at baseline) in thrombolysed patients

<table>
<thead>
<tr>
<th>Risk factors</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension</td>
<td>18 (60)</td>
</tr>
<tr>
<td>Hyperlipidaemia</td>
<td>14 (46)</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>8 (26)</td>
</tr>
<tr>
<td>Cigarette smoking</td>
<td>7 (23)</td>
</tr>
<tr>
<td>Ischaemic heart disease</td>
<td>5 (17)</td>
</tr>
<tr>
<td>Previous stroke or TIA</td>
<td>8 (26)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>4 (13)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medications</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-platelet therapy</td>
<td>15 (50)</td>
</tr>
<tr>
<td>Dual anti-platelet therapy</td>
<td>4 (13)</td>
</tr>
<tr>
<td>Anticoagulation</td>
<td>3 (10)</td>
</tr>
<tr>
<td>Antihypertensive therapy</td>
<td>11 (38)</td>
</tr>
<tr>
<td>Statin</td>
<td>10 (33)</td>
</tr>
</tbody>
</table>

Figure 1: Numbers of patients presenting to Beaumont Hospital (BH) during the 16 month study timeframe (January 2011 to April 2012)
Thrombolysed patients
The mean age of this cohort was 68.5 years (range 42 to 88 years) and almost two-thirds (19 patients; 63%) were male. Baseline data are outlined in Table 1. Of the 30 thrombolysed patients, 4 patients had a suboptimal response and were considered for subsequent on-site intra-arterial (IA) thrombolysis and/or thrombectomy. Almost half (10; 42%) of those who presented after their stroke onset arrived between 9am and 5pm, with a further 9 patients (38%) presenting between 5pm and midnight. The remaining patients (20%) presented overnight (midnight to 9 am). Almost all (5/6) of the thrombolysed in-patient strokes received their treatment between 9am and 5pm.

Timelines to administration of thrombolysis
In cases where times were poorly documented within medical notes, nursing notes were reviewed. For patients who presented to the ED after their stroke onset, the mean time (from door) for a review by the stroke service was 23 minutes (5-50). The mean door to CT time was 60 minutes (25-95) and the mean door to needle time was 92 minutes (46-130). For patients who had their stroke onset after admission to hospital, the mean time from symptom onset to review by the stroke service was 9 minutes (5-20). The mean time (from symptom onset) to CT was 42 minutes (15-90) and to needle was 99 minutes (60-150). The proportion of time taken in each step of the treatment pathway is outlined in Figure 3.
In many excluded groups, minor, fluctuating or resolving symptoms, advanced age or seizure at onset. Of patients in our study that had thrombolysis, a substantial number of patients due to the application of strict thrombolytic exclusion criteria, many of which are not occur in up to 30% of certain subgroups.

With local and international guidance, thrombolysed. The documented reasons for withholding treatment in the remaining patients were clear and in accordance with local and international guidance and physician motivation as primary issues.

Of those patients who presented within the 4.5 hour time-window and were not thrombolysed, the proportion of thrombolysed patients increased between the pre and post intervention, although the co-ordination of ambulance services at a national level can be challenging. In Ireland the Health Service Executive National Stroke Program is currently working in partnership with national ambulance services to implement ambulance efficient access protocols for patients with ischaemic stroke.

Studies assessing effective, multi-dimensional implementation strategies (education programmes, identification of treatment barriers and service goal-setting) have demonstrated improvements in administration rates and the efficiency of delivery of thrombolysis in IS. The PRACTISE trial implemented strategies to tackle under-utilisation of thrombolysis for IS. They identified obstacles to treatment as inter-organisational, intra-organisational, medical or psychological, against which they targeted intervention strategies. Patients in the intervention centres were more likely to receive thrombolysed (adjusted OR 1.58; 95%CI 1.11-2.27) and a major component of this effect was the more appropriate local application of clear contraindications to treatment. However the intervention did not improve the timeliness of treatment administration. The INSTINCT study assessed whether a similar multi-dimensional implementation strategy could increase alteplase use in community hospitals in Michigan. Although the proportion of thrombolysed patients increased between the pre-intervention and post-intervention periods in intervention hospitals to a greater extent than the control hospitals, the difference was not significant (RR 1.37; 95%CI 0.96-1.93; p=0.08). Authors identified barriers such as inter-departmental communication, familiarity with treatment guidelines and physician motivation as primary issues.

Of those patients who presented to hospital within the 4.5 hour treatment-window, almost one-half (45%) were thrombolysed. The documented reasons for withholding treatment in the remaining patients were clear and in accordance with local and international guidance. The main reason for withholding treatment was symptom resolution, a contraindication that is clearly outlined in thrombolysis protocols. However, deterioration following spontaneous improvement can occur in up to 30% of certain subgroups. There is emerging evidence that treatment may be unnecessarily withheld in a substantial number of patients due to the application of strict thrombolytic exclusion criteria, many of which are not evidence-based. Studies now suggest that thrombolysis can be used safely in many excluded groups, including those with minor, fluctuating or resolving symptoms, advanced age or seizure at onset. Of patients in our study that had thrombolysis...
withheld due to symptom resolution, approximately three quarters had an acute infarct on imaging. As further evidence emerges and protocols are revised, perhaps more patients who arrive on time will be eligible for treatment.

In Ireland, significant advances have been made in our stroke services (including thrombolysis rates) since the publication of the National Audit of Stroke Care in 2007. In conjunction with the launch of the National Stroke Program, the Stroke Register was established to collect information on the quality of care administered to stroke patients and this will help to identify areas where prioritised changes are necessary. Multiple guidelines, care bundles and pathways have been disseminated and service development has included the provision of telemedicine to enhance the co-ordination of thrombolysis services over large geographical areas. Stroke governance structures have also been enhanced with the development of local stroke teams and hospital networks and the appointment of clinical leaders. However, in parallel with such collaborative national incentives, local audit and focused initiatives must take place, which can result in significant reductions in time to CT and needle.24,25 This would result in more favourable outcomes for many more patients with IS presenting to acute services.

Correspondence: L Brewer
ERC/Smurfit Building, Beaumont Hospital, Dublin 9
Email: lindabrewer@rcsi.ie

Acknowledgements

T Farrell and the Charitable Infrmary Charitable Trust, The Association of Physicians of Great Britain and Ireland and the Madeleine Farrell Charitable Bequest for funding the student component of the study

References