Peer Reviewed

1

Document Type

Article

Publication Date

13-9-2017

Keywords

Biomedical Engineering, Bone Development, Molecular Medicine, Mechanisms of Disease, Paediatric Research, Craniosynostosis

Funder/Sponsor

This work was funded in part by the Irish Research Council Postdoctoral Fellowships (GOIPD/2014/483 and GOIPD/2013/269), by the European Research Council (ERC) under the European Community’s seventh framework programme (FP7/2007–2013/239685), by the Health Research Board under the Health Research Awards - Patient-Oriented Research scheme (HRA-POR-2014-569), by the Temple Street, Children’s Fund for Health (RPAC-2013-06) and by the commercialisation fund of the Enterprise Ireland (CF20144003).

Comments

This article is also available at https://www.nature.com/articles/s41598-017-11801-0#Ack1

Abstract

Craniosynostosis is a bone developmental disease where premature ossification of the cranial sutures occurs leading to fused sutures. While biomechanical forces have been implicated in craniosynostosis, evidence of the effect of microenvironmental stiffness changes in the osteogenic commitment of cells from the sutures is lacking. Our aim was to identify the differential genetic expression and osteogenic capability between cells from patent and fused sutures of children with craniosynostosis and whether these differences are driven by changes in the stiffness of the microenvironment. Cells from both sutures demonstrated enhanced mineralisation with increasing substrate stiffness showing that stiffness is a stimulus capable of triggering the accelerated osteogenic commitment of the cells from patent to fused stages. The differences in the mechanoresponse of these cells were further investigated with a PCR array showing stiffness-dependent upregulation of genes mediating growth and bone development (TSHZ2, IGF1), involved in the breakdown of extracellular matrix (MMP9), mediating the activation of inflammation (IL1β) and controlling osteogenic differentiation (WIF1, BMP6, NOX1) in cells from fused sutures. In summary, this study indicates that stiffer substrates lead to greater osteogenic commitment and accelerated bone formation, suggesting that stiffening of the extracellular environment may trigger the premature ossification of the sutures.

Disciplines

Anatomy | Biological Phenomena, Cell Phenomena, and Immunity | Cell Biology | Congenital, Hereditary, and Neonatal Diseases and Abnormalities | Developmental Biology | Laboratory and Basic Science Research | Medical Cell Biology

Citation

Barreto S, González-Vázquez A, Cameron AR, O’Brien FJ, Murray DJ. Identification of stiffness-induced signalling mechanisms in cells from patent and fused sutures associated with craniosynostosis. Scientific Reports. 2017; 7:11494

PubMed ID

28904366

DOI Link

10.1038/s41598-017-11801-0

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.