Peer Reviewed

1

Document Type

Article

Publication Date

1-1-2012

Keywords

Animals, Apoptosis, Argonaute Proteins, Benzothiazoles, Hippocampus, Immunoprecipitation, Kainic Acid, Male, Mice, Mice, Inbred C57BL, MicroRNAs, Protein Binding, Seizures, Toluene, Tumor Suppressor Protein p53, Up-Regulation

Abstract

MicroRNAs (miRNAs) are short, noncoding RNAs that function as posttranscriptional regulators of gene expression by controlling translation of mRNAs. A subset of miRNAs may be critical for the control of cell death, including the p53-regulated miRNA, miR-34a. Because seizures activate p53, and p53-deficient mice are reportedly resistant to damage caused by prolonged seizures, we investigated the role of miR-34a in seizure-induced neuronal death in vivo. Status epilepticus was induced by intra-amygdala microinjection of kainic acid in mice. This led to an early (2 h) multifold upregulation of miR-34a in the CA3 and CA1 hippocampal subfields and lower protein levels of mitogen-activated kinase kinase kinase 9, a validated miR-34a target. Immunoprecipitation of the RNA-induced silencing complex component, Argonaute-2, eluted significantly higher levels of miR-34a after seizures. Injection of mice with pifithrin-α, a putative p53 inhibitor, prevented miR-34a upregulation after seizures. Intracerebroventricular injection of antagomirs targeting miR-34a reduced hippocampal miR-34a levels and had a small modulatory effect on apoptosis-associated signaling, but did not prevent hippocampal neuronal death in models of either severe or moderate severity status epilepticus. Thus, prolonged seizures cause subfield-specific, temporally restricted upregulation of miR-34a, which may be p53 dependent, but miR-34a is probably not important for seizure-induced neuronal death in this model.

Disciplines

Physics | Physiology

Citation

Sano T, Reynolds JP, Jimenez-Mateos EM, Matsushima S, Taki W, Henshall DC. MicroRNA-34a upregulation during seizure-induced neuronal death. Cell Death & Disease. 2012;22(3):e287.

PubMed ID

22436728

DOI Link

10.1038/cddis.2012.23

Share

COinS