Peer Reviewed

1

Document Type

Article

Publication Date

9-9-2015

Keywords

Attenuation, cancer inhibition, cell interaction, cell invasion, controlled study, drug effect, epithelial mesenchymal transition, female, flow cytometry, gene expression, genetic analysis, human, human cell, ovary cancer, ovary metastasis, phenotype, reverse transcription polymerase chain reaction, thrombocyte.

Funder/Sponsor

Science Foundation Ireland (SFI)

Comments

The original article is available at www.biomedcentral.com

Abstract

BACKGROUND: Platelet-cancer cell interactions play a key role in successful haematogenous metastasis. Disseminated malignancy is the leading cause of death among ovarian cancer patients. It is unknown why different ovarian cancers have different metastatic phenotypes. To investigate if platelet-cancer cell interactions play a role, we characterized the response of ovarian cancer cell lines to platelets both functionally and at a molecular level.

METHODS: Cell lines 59 M and SK-OV-3 were used as in vitro model systems of metastatic ovarian cancer. Platelet cloaking of each cell line was quantified by flow cytometry. Matrigel invasion chamber assays were used to assess the invasive capacity of the cell lines. The induction of an EMT was assessed by morphology analysis and by gene expression analysis of a panel of 11 EMT markers using TaqMan RT-PCR.

RESULTS: SK-OV-3 cells adhered to and activated more platelets than 59 M cells (p = 0.0333). Platelets significantly promoted the ability of only SK-OV-3 cells to invade (p ≤ 0.0001). Morphology and transcritpome analysis indicated that platelets induce an epithelial-to-mesenchymal transition phenotype in both cells lines, with a more exaggerated response in SK-OV-3 cells. Next, we investigated if antiplatelet agents could abrogate the platelet-induced aggressive phenotype in SK-OV-3 cells. Both aspirin (p ≤ 0.05) and 2-methylthioadenosine 5'-monophosphate triethylammonium salt hydrate (P2Y12 inhibitor; p ≤ 0.01) significantly decreased their invasion capacity, and effectively reverted invasion to levels comparable to SK-OV-3 cells alone.

CONCLUSION: While there is increasing evidence for the cancer-protective effect of aspirin, this study suggests P2Y12 inhibition may also play a role. Understanding these complex interactions between platelets and cancer cells could ultimately allow the establishment of therapies tailored to inhibiting metastasis, thus significantly reducing cancer morbidity.

Disciplines

Life Sciences

Citation

Cooke NM, Spillane CD, Sheils O, O'Leary J, Kenny D. Aspirin and P2Y12 inhibition attenuate platelet-induced ovarian cancer cell invasion. BMC Cancer. 2015 Sep 9;15(1):627.

PubMed ID

26353776

DOI Link

10.1186/s12885-015-1634-x

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

Included in

Life Sciences Commons

Share

COinS