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Summary.  

 
It has become clear that platelets are not simply cell fragments that plug the 

leak in a damaged blood vessel; they are, in fact, also key components in the 

innate immune system, which is supported by the presence of Toll-like 

receptors (TLRs) on platelets. As the cells that respond first to a site of injury, 

they are well placed to direct the immune response to deal with any resulting 

exposure to pathogens. The response is triggered by bacteria binding to 

platelets, which usually triggers platelet activation and the secretion of 

antimicrobial peptides. The main platelet receptors that mediate these 

interactions are glycoprotein (GP)IIb–IIIa,GPIbα,FcγRIIa, complement 

receptors, and TLRs. This process may involve direct interactions between 

bacterial proteins and the receptors, or can be mediated by plasma proteins 

such as fibrinogen, von Willebrand factor, complement, and IgG. Here, we 

review the variety of interactions between platelets and bacteria, and look at 

the potential for inhibiting these interactions in diseases such as infective 

endocarditis and sepsis. 

 

Introduction 
Haemostasis is a critical process that acts to seal breaches in the vascular 

system. This serves two functions: prevention of further blood loss and denial 

of access for pathogens to the vascular system. Platelets are key mediators of 

this response and act to stop the leak and facilitate wound healing. In addition, 

platelets play a key role in preventing infection. When activated, platelets 

secrete the contents of their granules which are known to contain over 300 

proteins [1] as well as bioactive molecules such as ADP and serotonin. ADP 

acts to recruit more platelets into the growing thrombus while serotonin 

causes vasoconstriction to reduce blood loss. Secreted cytokines and 

chemokines recruit leucocytes to deal with any potential infection and 

secreted anti-microbial peptides act to kill pathogens. 

 

While thrombus formation at the site of a wound prevents blood loss, it can 

also occur in a diseased vessel such as a coronary or cerebral artery causing 
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a potentially fatal myocardial infarction (MI) or stroke. Equally, activation of 

platelets by pathogens at locations other than a wound can lead to serious 

consequences such as infective endocarditis (IE) or disseminated 

intravascular coagulation (DIC). However, while therapies have been 

developed to prevent thrombosis in stroke and MI, it is essential to develop 

therapies to prevent pathogen-induced platelet activation which will in all 

probability be different from existing anti-platelet agents. 

 

The activation of platelets leads to secretion of anti-microbial peptides, 

although many bacteria have become resistant to these peptides [2]. Bacteria 

have also developed the ability to interact with platelets without inducing 

platelet activation which allows them to adhere to surfaces coated with 

platelets such as a damaged cardiac valve. This ability to bind to platelets 

without activating them or to be resistant to their anti-microbial actions 

enables bacteria to survive in the circulation either surrounded by or 

phagocytosed by platelets and invisible to leucocytes. 

 

Infection and thrombosis 
As platelets are usually the first cells to respond to a wound they have an 

important role in regulating the host response to infection which is by platelet 

activation by bacteria [3, 4]. However, this process can contribute to diseases 

such as infective endocarditis, a serious infection of the heart valves usually 

due to infection with either staphylococci (e.g. S. aureus) or streptococci (e.g. 

S. sanguinis or S. gordonii). IE is due to the formation of a bacteria-platelet 

thrombus on one of the heart valves which, as it grows, either leads to valve 

failure requiring valve replacement or to the formation of a septic embolus 

which can cause a stroke, heart attack or pulmonary embolism. The major risk 

factors for IE are dental disease or manipulation and intravenous drug abuse 

which allow entry of oral streptococci and S. aureus respectively into the blood 

stream [5].  

 

Another thrombotic disease associated with infection is septicemia [6]. 

Patients with septicemia typically develop DIC characterized by microthrombi 
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formation which can lead to blockage of the microvasculature and organ 

damage. Thrombus formation can also lead to consumption of coagulation 

factors and platelets placing the patient at risk of a bleeding event [7]. 

Thrombocytopenia due to platelet activation in sepsis is a common 

occurrence and its extent is related to outcome [8]. 

 

The studies of bacterial interactions with platelets have primarily been 

confined to Gram-positive bacteria, especially staphylococci (S. aureus and S. 

epidermidis) and streptococci (S. sanguinis and S. gordonii), although the 

interaction with Gram-negative Helicobacter pylori has also been 

characterized [4]. 

 

Mechanisms of interaction 

 
There are three basic mechanisms that are used to mediate the interaction 

between pathogens and platelets: 1) Binding to bacteria of a plasma protein 

that is a ligand for a platelet receptor 2) Direct bacterial binding to a platelet 

receptor 3) Secretion of bacterial products i.e. toxins that interact with 

platelets. This presence of multiple mechanisms makes it difficult to identify 

the roles of the different proteins (both bacterial and platelet) which is further 

complicated by interactions that are not only species-specific but strain-

specific as well. Some interactions lead to platelet activation while others have 

no effect on the platelet. These non-activating interactions are usually of high 

affinity and probably play a role in supporting platelet adhesion under the 

shear conditions found in the circulation. Typically bacterial proteins that 

mediate adhesion are distinct from those that mediate aggregation. Thus, 

bacteria can support platelet adhesion and/or trigger platelet activation.  

 

Bacterial-induced platelet aggregation is often uniquely characterised by a 

distinct delay known as the lag time (Fig. 1). When a soluble agonist such as 

ADP is added to a platelet suspension the aggregation response happens 

within a few seconds. When bacteria are added to a suspension of platelets, 

there is a delay in the aggregation response that is concentration-dependent. 
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Increasing the bacteria concentration shortens this lag time but never 

abolishes it. Bacteria such as S. aureus induce platelet aggregation with a lag 

time of around 2-3 minutes. However, a complement-dependent strain such 

as S. sanguinis NCTC 7863 usually takes between 10-15 minutes to induce 

aggregation. Unlike soluble agonists, bacterial-induced platelet aggregation is 

all-or-nothing. 

 

Platelet receptors 
While bacteria utilize many different proteins to interact with platelets, there 

are a limited number of platelet receptors that mediate adhesion and / or 

activation, notably GPIIb/IIIa, GPIb and FcγRIIa (Fig. 2 & 3). This limited 

number of platelet receptors makes it possible to realistically develop anti-

platelet agents that target a wide-range of bacteria-platelet interactions. 

 

GPIIb/IIIa.  

GPIIb/IIIa is the most abundant platelet surface membrane glycoprotein and 

its expression is specific to platelets and megakaryocytes. GPIIb/IIIa is a 

member of the integrin family of heterodimeric receptors that mediate cell 

adhesion and signalling. Resting platelets contain approximately 80,000 

surface copies with additional pools of GPIIb/IIIa in the membranes of α-

granules and the open canicular system. Upon platelet activation, surface 

expression can increase as much as 50%. As the platelet fibrinogen receptor 

GPIIb/IIIa mediates cross-linking of platelets by fibrinogen which is 

responsible for aggregate formation [9]. 

 

Fibrinogen-binding proteins 

Staphylococci have a family of surface receptors that are members of the 

Microbial Surface Components Recognizing Adhesive Matrix Molecules 

(MSCRAMM) family of proteins, often characterized by the presence of a 

domain rich in serine-aspartate repeats (Sdr) [10]. Examples of MSCRAMMs 

include S. aureus clumping factors (Clf) A [11] and B [12] and fibronectin-

binding proteins (FnBP) A and B [13]; S. lugdunensis Fbl [14]; S. epidermidis 
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Sdr G [15]. Most of the MSCRAMMs bind plasma proteins such as fibrinogen 

or fibronectin [16].  

 

While fibrinogen-binding MSCRAMMs are related proteins, they bind to 

different domains in fibrinogen. Both Clf A and Fbl bind to the C-terminal 

region of the fibrinogen γ-chain [17] as do the non-Sdr proteins Fnbp A and B. 

Clf B binds to the C-terminus of Aα chain [18] and Sdr G to the Bβ-chain [19]. 

Fibrinogen-bound bacteria mediate platelet activation in a similar way to other 

fibrinogen-coated surfaces. As its name implies, Fnbp also binds fibronectin 

and this can also bind to GPIIb/IIIa [20]. In all cases, the MSCRAMM-bound 

fibrinogen/fibronectin can interact with GPIIb/IIIa generating an outside in 

signal capable of triggering platelet activation.  

 

Streptococci also contain fibrinogen-binding proteins such as S. pyogenes M1 

protein which triggers platelet aggregation [21]. S. mitis lysin binds to the 

α and β subunits of the fibrinogen D fragment, although it is not known if this 

induces platelet aggregation [22]. While both proteins are shed/secreted from 

the bacteria, lysin probably remains associated with the bacterial surface due 

to its choline-binding properties. 

 

Direct binding to GPIIb/IIIa 

More recently, reports have demonstrated that some bacteria express 

proteins that can directly bind to GPIIb/IIIa in the absence of a bridging 

molecule. S. epidermidis Sdr G can bind directly to GPIIb/IIIa and can also 

crosslink GPIIb/IIIa and FcγRIIa [15]. More recently, a heme-binding protein 

on S. aureus, IsdB has been shown to support platelet adhesion and induce 

platelet aggregation through a direct interaction with GPIIb/IIIa [23]. S. 

gordonii also expresses Platelet Adhesion Binding protein A (PadA) a novel 

high molecular weight protein which directly binds to GPIIb/IIIa and is critical 

for supporting platelet adhesion but not platelet aggregation [24]. The site of 

interaction between IsdB or PadA and GPIIb/IIIa has not yet been mapped, 

although it is noteworthy that preincubating platelets with the peptide mimetic, 

RGD, completely abolishes adhesion.  
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GPIbα  

GPIbα is a member of the leucine-rich repeat family of proteins which is 

exclusively expressed on platelets and megakaryocytes. It can bind several 

different ligands but its crucial role in primary haemostasis relies on its ability 

to interact with von Willebrand factor (vWF). GPIbα exists in a complex with 

GPIbβ, GPIX and GPV in a ratio of 2:2:2:1. Platelets express roughly 25,000 

copies of GPIbα which mediates both platelet tethering to surface exposed 

VWf and supports platelet activation under high shear conditions [25].  

 

Several species of streptococci have been shown to directly interact with 

GPIbα, mediated by a family of serine-rich glycoproteins. This family includes 

the S. sanguinis protein SrpA [26] and S. gordonii GspB [27, 28, 29] and Hsa 

[30], which are all structurally related. These are large, highly-glycosylated, 

serine-rich proteins that bind sialic acid residues on host receptors. GspB 

predominantly binds O-linked sialic acid residues while Hsa predominantly 

binds to N-linked sialic acid residues [29]. The interactions with GPIbα trigger 

platelet aggregation and support platelet adhesion. S. aureus expresses SraP 

which is a homologue of GspB and supports platelet adhesion [31], possibly 

through GPIbα.  

 

Just as some bacterial proteins can bind fibrinogen, there are also vWf-

binding proteins on bacteria. S. aureus protein A has been shown to bind vWf 

which in turn can interact with GPIbα [32]. H. pylori has also been shown to 

bind plasma vWf through an unknown protein, which in turn enables it to 

interact with GPIbα and trigger platelet aggregation [33]. Unlike soluble or 

immobilised vWf, bacteria-bound vWf can interact with GPIbα in the absence 

of high shear. However, it is not clear if the interaction with vWf is simply an 

adhesive interaction mediating the binding of bacteria to platelets thereby 

facilitating an interaction with an activating receptor or whether it also plays a 

role in platelet activation. Certainly the protein A-mediated interaction does not 

lead to platelet activation while the H. pylori-mediated interaction leads to 

platelet activation although only through engagement of FcγRIIa. 
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Toll-like receptors.   
Toll-like receptors (TLR) are a family of receptors in the innate immune 

system that mediate the host response to infection. These receptors 

recognise conserved pathogen-associated molecular patterns (PAMP) found 

on different classes of infectious agents [34]. To date at least 11 TLRs have 

been described in various immune and non-immune cells. Recently platelets 

have been reported to express TLR 2, 4 and 9 with very weak expression of 1, 

6 and 8 reinforcing their role as primitive immune cells in host defense [35, 

36]. The discovery of TLRs on platelets led to a search for their role in platelet 

function with most studies focusing on TLR 2 and 4. 

 

The ligand for TLR 4 is lipopolysaccharide (LPS) from Gram-negative bacteria 

[37]. Some studies have shown that LPS can induce platelet aggregation [38, 

39, 40, 41] while others have shown no effect [42] or even inhibition of platelet 

aggregation [43]. Exposure to LPS has also been shown to reduce platelet 

adhesion to fibrinogen in a calcium-dependent process [44]. More recently, it 

has been shown that rather than induce platelet aggregation LPS leads to 

enhanced formation of neutrophil-platelet complexes leading to the formation 

of neutrophil extracellular traps [45] and that LPS-induced thrombocytopenia 

in mice is neutrophil-dependent [46] which is due in part to increased 

phagocytosis [47]. LPS also induced tissue factor expression on endothelial 

cells and monocytes which in turn serves as a binding site for platelet 

GPIIb/IIIa [48]. In addition, LPS stimulated the release of sCD40L from 

platelets, which is widely regarded as a predictive indicator of cardiovascular 

events such as stroke or MI [49], as well as TNF release [36]. Soluble CD40L 

release is significantly reduced using a blocking monoclonal antibody against 

TLR4 [50]. E. coli O157 LPS has been shown to bind to platelet TLR4 leading 

to activation [51] although other studies have failed to show any effect of LPS 

on platelet aggregation [42]. 

 

The natural ligand for TLR 2 is lipoteichoic acid [52] and this has been shown 

to have mixed effects on platelet aggregation. It has been shown to inhibit 

platelet aggregation and to support platelet adhesion to S. epidermidis [53]. 
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Studies using Pam3CSK4, a synthetic TLR2 agonist, have shown no effect on 

platelet aggregation at concentrations that activate TLR2 in other cell types 

[42], although it did induce aggregation and formation of platelet-neutrophil 

aggregates at a ten fold higher concentration in wild-type but not TLR2-

deficient mice [54]. More recently it was shown to induce platelet aggregation 

and secretion in an ADP receptor-dependent manner [55]. S. pneumoniae 

was shown to induce platelet aggregation in a TLR2-dependent manner and 

also generated an intracellular signal that triggered dense granule release and 

activated the phosphoinositide-3-kinase (PI3-kinase)-RAP1 pathway [56]. 

However, S. aureus-derived lipoteichoic acid has been shown to inhibit 

platelet aggregation [57]. 

 

While the molecular basis of these effects is still unclear it appears that the 

primary effect of TLR-mediated activation of platelets is the secretion of 

immunomodulatory agents and the activation of other cells such as 

neutrophils and endothelial cells rather than the formation of a thrombus. In 

this context platelets are acting as components of the innate immune system 

[58] rather than components of haemostasis as they act to detect the 

presence of infectious agents and coordinate the response to the pathogen. 

 

Complement receptors 
When bacteria enter the blood they frequently trigger complement generation 

either in an antibody-dependent manner or an antibody-independent manner 

(alternative pathway) [59]. Complement-coated bacteria have been shown to 

be capable of inducing platelet aggregation. Some strains of S. sanguinis 

have been shown to induce platelet aggregation in a process that involves 

complement but also requires antibody binding [60, 61]. Human gC1q-R is a 

multi-ligand binding protein for the first component of complement, C1q [62]. 

Low levels of gC1q-R are expressed on platelets under resting conditions, 

however upon activation the receptor number increases [63], thus possibly 

serving as a receptor for complement-coated S. sanguinis. S. aureus Clf A 

and B can induce platelet aggregation in a complement- and antibody-

dependent process [64, 65]. In all cases complement-mediated aggregation is 
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FcγRIIa-dependent. It would appear to be dependent on the presence of an 

unidentified complement receptor on platelets as well.  

 

FcγRIIa 

The Fc portion of antibodies mediates its effects through a family of receptors 

known as Fc receptors. Each antibody type has a sub-family of Fc receptors 

with IgG interacting with the FcγR sub-family. FcγRIIa is the most widely 

distributed Fcγ receptor in nature. It is predominantly expressed on 

neutrophils, monocytes, macrophages and platelets. FcγRIIa is a low affinity 

IgG receptor with approximately 2000-3000 copies per platelet. It consists of a 

single transmembrane domain, a C-terminal that contains the binding site for 

IgG and a cytoplasmic domain. The cytoplasmic domain contains two YXXL 

sequences separated by twelve amino acids that together constitute an 

immunoreceptor tyrosine-activation motif (ITAM) [66]. 

 

Evidence suggests that FcγRIIa plays a critical role in bacterial-induced 

platelet aggregation  [33, 61, 65, 67, 68]. The role of FcγRIIa is not just as an 

IgG receptor but it also plays an important role in platelet function. FcγRIIa 

enhances GPIIb/IIIa-mediated platelet spreading on fibrinogen in an IgG-

independent manner [69]. It has also been shown to be co-localized with 

GPIbα and to play a role in GPIbα-mediated signaling in an IgG-independent 

manner [70]. 

 

The interaction of fibrinogen- or fibronectin-bound S. aureus or S. pyogenes 

with platelet GPIIb/IIIa induces platelet aggregation in an antibody-dependent 

manner. Thus, S. aureus Clf A-mediated aggregation requires fibrinogen and 

antibody to bind to Clf A which in turn bind to GPIIb/IIIa and FcγRIIa 

respectively [65]. Similarly, vWf-bound bacteria such as H. pylori induce 

platelet aggregation in an FcγRIIa-dependent manner [33]. In this case the 

vWf binds to GPIbα and the antibody binds to FcγRIIa. Complement-

dependent platelet aggregation is also antibody- and FcγRIIa-dependent [61].  
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In the case of S. sanguinis [68], S. gordonii and S. pneumoniae [56] 

aggregation is also FcγRIIa-dependent but there is no requirement for IgG to 

induce aggregation. This is analogous to the role of FcγRIIa in promoting cell 

signaling through GPIIb/IIIa [69] and GPIbα [70, 71, 72]. 

 

Bacterial toxins 
As well as interacting with platelets through surface proteins, bacteria can also 

secrete toxins that can activate platelets [73]. Porphyromonas gingivalis is an 

oral pathogen that secretes a family of cysteine proteases known as 

gingipains [74]. These toxins can induce platelet aggregation by cleaving 

PAR-1 in a manner analogous to thrombin [75, 76]. S. aureus secretes a 

34kDa pore toxin called α-toxin [77]. It is produced by almost all strains of S. 

aureus. It binds to the lipid bilayer of platelets creating a transmembrane pore 

and an influx of calcium [78, 79], which in turn triggers platelet activation in a 

manner analogous to the calcium ionophore A23187 [80]. Other pore-forming 

toxins include streptolysin O [81] from S. pyogenes and pneumolysin [82] from 

S. pneumoniae which activate platelets in a similar manner to α-toxin. 

 

S. aureus and S. pyogenes can produce a super-family of toxins known as 

superantigens and Staphylococcal Superantigen-Like (SSL) toxins [83]. One 

of these (SSL5) has been shown to directly interact with GPIbα via the 

sLacNac residues that terminate its glycan chains [84]. SSL5 has also been 

reported in an abstract to bind directly to GPVI [85]. The binding of SSL5 to 

platelets triggered platelet activation and aggregation. 

 

Effect of bacteria on platelet function 
While it is clear that many bacteria can adhere to platelets and induce platelet 

aggregation it is important to confirm that this is not simply an in vitro artifact. 

Key elements here are evidence for signal generation in platelets in response 

to their interactions with bacteria; evidence of a response in models that better 

reflect in vivo conditions or evidence of response in animal models of disease. 
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Role of shear stress 
Platelet aggregation and static adhesion studies are artificial systems that do 

not truly reflect the dynamic nature of the circulatory system. Platelets are 

routinely exposed to a range of shear stresses reflecting both venous and 

arterial conditions. Platelet function is sensitive to shear stress, for example, 

the interaction between GPIbα and vWf only occurs under conditions of high 

shear stress.  

 

S. sanguinis and S. gordonii both interact with GPIbα and therefore it is not 

surprising that this interaction is shear-dependent. However, in contrast to the 

high-shear-dependent rolling of platelets over immobilized vWf, platelets roll 

over both streptococci under low shear conditions [26, 30]. Deletion of the 

serine-rich, highly glycosylated proteins, SrpA (S. sanguinis) or GspB/Hsa (S. 

gordonii) completely abolished rolling. Under low shear conditions, thrombus 

formation on S. pyogenes is antibody-, FcγRIIa-, fibrinogen- and GPIIb/IIIa-

dependent as is platelet aggregation [86]. However, platelet aggregation 

induced by S. aureus is more complex with potential roles for Clf A and B and 

Fnbp A and B. Studies under shear conditions showed that thrombus 

formation only happened under high shear conditions (>800 s-1) and that it 

was entirely dependent on Clf A as none of the other pro-aggregatory proteins 

could support thrombus formation. As with aggregation, thrombus formation 

was antibody-FcγRIIa and fibrinogen-GPIIb/IIIa-dependent [67]. 

 

Platelet signaling in response to pathogens 
The ability of bacteria to generate intracellular signals upon binding to 

platelets is important in establishing a biological relevance for the interaction. 

There is a paucity of data on this due in part to the complex, multicomponent 

nature of the interactions. 

 

Upon activation by S. sanguinis, platelets release their dense granules, which 

contain vasoactive substances including the adenosine nucleotides, ATP and 

ADP  [87]. S. sanguinis also express an ectoATPase which hydrolases the 

released ATP to ADP [88, 89]. ADP binds to the platelet ADP receptors, 
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P2Y12 and P2Y1, to serve as an amplification step essential for stable 

aggregate formation. Further studies have characterized the signal induced by 

S. sanguinis and demonstrated that it is also cyclooxygenase- and 

thromboxane A2-dependent [68]. More recently Pampolina and colleagues 

demonstrated that in the presence of IgG, S. sanguinis caused tyrosine 

phosphorylation of platelet FcγRIIa within 30 seconds followed by 

phosphorylation of PLCγ2, Syk and LAT. Subsequently there was tyrosine 

phosphorylation of PECAM-1 and the tyrosine phosphatase SHP-1 leading to 

dephosphorylation of PLCγ2, Syk and LAT. As aggregation progressed in to 

the early phase, platelets released thromboxane and contents of their dense 

granules acting to amplify and stabilize the platelet aggregate [90]. 

 

Keane and colleagues also demonstrated that platelet adhesion to 

immobilised S. gordonii resulted in tyrosine phosphorylation of the ITAM-

bearing receptor, FcγRIIa, as well as phosphorylation of downstream 

effectors, Syk and PLCγ2. This signal resulted in platelet dense granule 

secretion, filopodia and lamellipodia extension, and platelet spreading. 

Inhibition of either GPIIb/IIIa or FcγRIIa completely abolished dense granule 

release and platelet spreading [91]. 

 

Streptococcus mitis has also been shown to bind to platelets in a GPIIb/IIIa- 

and GPIbα− independent manner, however no platelet activating signal was 

generated [92, 93]. Relatively little is known about the signal generated in 

platelets upon binding S. aureus other than it is cyclooxygenase- and 

thromboxane-dependent [94].  

 

Phagocytosis 
The presence of FcγRIIa on the platelets surface suggests that platelets may 

have the capacity to phagocytose as this receptor is important in immune 

complex clearance. Platelets have been shown to phagocytose immune 

complexes in an FcγRIIa-dependent manner and can also be phagocytosed 

themselves [95, 96] also in an FcγRIIa-dependent manner [47].  Platelets 

have been shown to enhance the phagocytosis of periodontal pathogens by 
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neutrophils [97]. Platelets can also directly phagocytose bacteria such as P. 

gingivalis [98, 99] and S. aureus [100, 101, 102]. However, often phagocytosis 

does not result in bacterial killing which has been suggested to be due to the 

structure of their vacuoles [100]. Bacteria can also get trapped in the space 

between platelets in an aggregate [99]. As a result, phagocytosis of bacteria 

by platelets can lead to the formation of a pool of viable bacteria present 

either intracellularly or within a thrombus which are protected from the 

immune system and plays a role in the pathogenesis of diseases such as 

infective endocarditis. 

 

Bacteria-platelet interactions in vivo 

Several reports have investigated the interaction of bacteria with platelets 

under in vivo conditions. Mice infected with S. aureus develop platelet-rich 

thrombi in a process that is dependent on Clf A since administration of the 

fibrinogen-binding domain of Clf A prevented thrombus formation [103]. Dogs 

infected with S. aureus develop sepsis with an associated drop in platelet 

count [104]. Resistance to platelet anti-microbial peptides was a virulence 

factor in S. aureus for infective endocarditis [105] while hyper-production of α-

toxin reduced the extent of S. aureus mediated endocarditis [106] presumably 

due to increased levels of anti-microbial peptides. S. aureus SraP is a 

virulence factor in infective endocarditis [31] as is wall teichoic acid [107]. 

Lactococcus lactis expressing either Clf A or Fnbp A were shown to be one-

hundred times more infective than the wild-type L. lactis strain in an animal 

model of infective endocarditis [108]. However, MSCRAMMs have been 

shown to have only a modest role to play in S. aureus-mediated endocarditis 

in animal models [109, 110, 111] which is likely to be due to the presence of 

multiple platelet interacting proteins on the bacterial surface and the difficulty 

of generating a strain of S. aureus devoid of any interaction with platelets 

especially since complement formation can occur in the absence of these 

proteins. Thus, blockade of the complement receptor gC1qR was shown to be 

beneficial in S. aureus mediated endocarditis [112]. Deletion of the lysin gene 

from S. mitis significantly reduced endocarditis in a rat model [22]. There was 

evidence of increased rates of embolization in H. pylori-infected mice after 

laser-induced arterial damage [113]. 
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Evidence from studies in mice suggests that in the case of S. pneumoniae, 

thrombocytopenia and DIC is due to a bacterial neuraminidase that removes 

sialic acid from platelet proteins making them substrates for the Ashwell 

receptor in the liver. Binding to the Ashwell receptor leads to clearance of 

platelets from the circulation resulting in thrombocytopenia [114]. 

 

H. pylori infection is associated with platelet activation in patients [115, 116]. 

Clinical studies have shown that H. pylori eradication therapy in patients with 

idiopathic thrombocytopenic purpura who are H. pylori-positive was effective 

at improving the platelet count [117, 118, 119, 120]. This suggests that on-

going infection with H. pylori leads to platelet activation and subsequent 

thrombocytopenia.  

 

There are several differences between human and rodent platelets most 

notably the absence of FcγRIIa. As FcγRIIa has been shown to play a 

significant role in the interaction of bacteria with human platelets the relevance 

of data from traditional mouse models of sepsis are questionable. As 

transgenic mice expressing FcγRIIa are now available it will be possible to use 

these to better understand the interaction of bacteria with platelets in vivo.  

 

There is little data on the role of platelets in infection in humans but a study of 

patients with S. pyogenes toxic shock syndrome showed evidence of micro-

thrombi in biopsies. These platelet aggregates formed in a process dependent 

on M1 protein, IgG and FcγRIIa [21] similar to that seen in vitro.  

 

Conclusions 
There is no doubt that platelets play an important role in the innate immune 

system. As the first responders to injury they are ideally placed to initiate an 

immune response to potential pathogens through secretion of anti-microbial 

peptides to kill bacteria and chemokines to attract other immune cells. Both 

the haemostatic and immune functions of platelets require platelet activation 

to occur. There are many different mechanisms by which bacteria can interact 
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with platelets including direct interactions with platelet receptors as well as the 

secretion of bioactive agents such as LPS. However, there is a paucity of in 

vivo data to identify the key mechanisms in infectious diseases such as 

sepsis. Is there a primary interaction driving the response or is it a 

combination of all of the interactions? 

 

Some bacteria have developed resistance to the anti-microbial effects of 

platelets and have the ability to co-opt platelets into the infection process. By 

inducing platelet activation while resistant to the anti-microbial peptides they 

can become engulfed in a septic thrombus as occurs in infective endocarditis. 

They are then protected from the other cells of the immune system which 

allows them to persist in the circulation. Even when susceptible to anti-

microbial peptides, rapid bacterial growth during sepsis leads to extensive 

platelet activation which in turn leads to DIC and shock. Thus, in these cases 

inhibition of platelet activation by bacteria may prevent some of the serious 

consequences of sepsis and infective endocarditis. 

 

As each species of bacteria, and even individual strains, have different 

mechanisms for interacting with platelets it will in all likelihood prove 

impossible to target the bacteria as a mechanism to prevent platelet 

activation. However, there appears to be a limited number of platelet 

receptors involved making the platelet a better target. GPIIb/IIIa is an obvious 

target as it is important in S. aureus-induced platelet activation and there are 

approved inhibitors available. However, bleeding is a serious problem with 

these drugs and in a patient already thrombocytopenic due to sepsis they 

would further compromise the remaining platelets. GPIbα is another important 

target as it is important in streptococcal sepsis however, despite much effort 

there have been no approved GPIbα inhibitor. Aspirin could also be used to 

prevent platelet activation but as it also compromises platelet function and as 

some species of bacteria can induce platelet activation in a cyclooxygenase-

independent manner it is of limited use. The most promising target is FcγRIIa 

as it plays a critical role in platelet activation induced by most species of 

bacteria as they either require bound IgG to induce aggregation or else 
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FcγRIIa is important in the activation process even if antibody is not required. 

Another advantage of targeting FcγRIIa is that it has minimal effects on 

normal platelet function, thus preserving platelet function and not causing 

bleeding. While there are no inhibitors of FcγRIIa at present the possibility of 

synthesizing such compounds has recently been demonstrated [121].  

 

The conventional view of platelets has been that of anucleate cellular 

fragments that play a key role in haemostasis. The discovery of evidence for 

protein synthesis by platelets [122] suggested that they are more 

sophisticated than originally thought. We now have strong evidence that 

platelets are also key components of the innate immune system where they 

play important roles in infection and inflammation. While our understanding of 

the role of platelets in the immune system is far from complete we do see the 

possibility and potential benefits of specifically targeting the immune function 

of platelets in both autoimmune and infectious diseases. 
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Figure 1. Lag time to platelet aggregation. ADP induced platelet aggregation 

with a lag time of 15 sec, whereas Streptococcus sanguinis induces platelet 

aggregation with a lag time of 4 mins. Lag time is defined as the time taken 

from addition of agonist or bacteria to the first signs of platelet aggregation.  
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Figure 2. Summary of indirect interactions between bacteria and platelets. 

Different species of bacteria bind different plasma proteins which act as a 

bridge to their respective platelet receptor, thus triggering activation. ClfA; 

clumping factor A, FnbpA; fibronectin binding protein A, PA; protein A, IgG; 

immunoglobulin G, vWf; vonWillebrand Factor, C1q; complement 1q, GP; 

glycoprotein. Note that Protein A does not require antibody while H. pylori 

does. 
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Figure 3. Summary of direct interactions between bacteria and platelets. 

Different species of bacteria contain ligand mimetic motifs that act as agonist 

on platelet receptors. PadA; platelet adhesion protein A, IsdB; iron-regulated 

surface determinant B, SdrG; Serine aspartate repeat G, Hsa; haemaglutinin 

salivary antigen, GspB; glycosylated streptococcal protein B, SrpA; serine-rich 

protein A, LPS; lipopolysaccharide, GP; glycoprotein, TLR; Toll-like receptor  
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Table 1. Platelet bacterial interactions  
 
Platelet receptor Bacteria Bacterial protein Bridging protein 

    
GPIIbIIIa S. epidermidis SdrG Fibrinogen 

 S. aureus FnbpA/B Fibronectin 
 S. aureus FnbpA/B Fibrinogen 
 S. aureus ClfA Fibronectin 
 S. aureus  ClfA Fibrinogen 
 S. aureus IsdB Direct 
 S. pyogenes M1 Fibrinogen 
 S. gordonii PadA Direct 
 S. lugdunensis Fbl Fibrinogen 
    

GPIbα S. sanguis SrpA Direct 
 S. gordonii GspB/Hsa Direct 
 S. aureus Protein A vWf 
 H. pylori ? vWf 
    

FcγRIIa S. aureus FnbpA/B IgG 
 S. aureus ClfA IgG 
    

TLR2 S. pneumoniae ? Direct 
 ? Lipoprotein Direct 
    

TLR4 E. coli LPS Direct 
    

gC1q-R S. sanguinis ? C1 
    

 
 
 
Table 2. Platelet toxin interactions 
 

Platelet receptor Bacteria Bacterial toxin 
   

PAR1 P. gingivalis Gingipains 
   

GPIbα S. aureus SSL-5 
   

GPVI S. aureus SSL-5 
   

Phospholipids S. pneumoniae Pneumolysin 
 S. aureus α-toxin 
 S. aureus Leukocidin 
 S. pyogens  Streptolysin-O 
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