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Chronic obstructive pulmonary disease (COPD) may be an autoimmune disease. Smoking causes an imbalance of proteases and
antiproteases in the lung resulting in the generation of elastin peptides that can potentially act as autoantigens. Similar to COPD, Z
alpha-1 antitrypsin deficiency (Z-A1ATD) and cystic fibrosis (CF) are associated with impaired pulmonary antiprotease defences
leading to unopposed protease activity. Here, we show that there is a trend towards higher bronchoalveolar lavage fluid (BALF)
antielastin antibody levels in COPD and Z-A1ATD and significantly lower levels in CF compared to control BALF; the lower levels
in CF are due to the degradation of these antibodies by neutrophil elastase. We also provide evidence that these autoantibodies
have the potential to induce T cell proliferation in the emphysematous lung. This study highlights that antielastin antibodies are
tissue specific, can be detected at elevated levels in COPD and Z-A1ATD BALF despite their being no differences in their levels in
plasma compared to controls, and suggests a therapeutic role for agents targeting these autoantibodies in the lungs.

1. Introduction

Chronic obstructive pulmonary disease (COPD) is charac-
terized by poorly reversible airflow limitation that is usually
progressive and associated with an abnormal inflammatory
response of the lungs to noxious particles or gases [1].
Cigarette smoking is a well-known risk factor for developing
COPD. Damage to extracellular matrix proteins, for example
elastin, plays a major role in the pathology of COPD but
also in other chronic inflammatory lung diseases such as Z
alpha-1 antitrypsin deficiency (Z-A1ATD, a genetic form of
emphysema) and cystic fibrosis. An imbalance of proteases
and antiproteases in these chronically inflamed lungs can
potentially generate neoantigens derived from elastin.

CD8+ and CD4+ T cells are abundant in the COPD lung
[2, 3]. Cosio et al. [2] have suggested that in COPD, these
cells may be activated by dendritic cells presenting unique
antigens released during smoking-induced lung injury, for
example, elastin peptides. The adaptive immune system
recognises these antigens as foreign and triggers an immune
reaction leading to the generation of autoantibodies.

In 2007 Lee et al. described the presence of antielastin
autoantibodies in the plasma of individuals with COPD
and showed that elastin peptides can induce proliferation
of peripheral blood CD4+ T cells isolated from individuals
with COPD but not control individuals nor asthma patients
[4]. Choo later commented on this [5]; however, we [6] and
others later disputed the singularity of this observation with
respect to COPD by demonstrating that antielastin antibod-
ies are also detectable, and present at even higher levels [7],
in plasma of smoking controls. Cottin et al. also failed to
detect the presence of circulating antielastin autoantibodies
in combined pulmonary fibrosis and emphysema compared
to controls [8].

The lack of systemic antielastin antibodies in COPD
or other chronic inflammatory lung conditions does not
preclude the possibility of local autoimmune responses in
the lung playing an important role in disease pathogenesis;
compartmentalised inflammatory responses are an inherent
feature of inflammatory lung diseases. For example, Cal-
abrese et al. demonstrated increased IL-32 expression in lung
samples of COPD patients compared to controls [9], whereas
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systemic IL-32 levels were not found to be elevated in the
plasma of a similar cohort of COPD patients [6].

In this study, we sought to detect the presence of
antielastin autoantibodies in bronchoalveolar lavage fluid
(BALF) from individuals with COPD, Z-A1AT deficiency
and CF and compare levels to those in control BALF. We
also aimed to determine a potential role for these antielastin
antibodies in the emphysematous lung.

2. Materials and Methods

2.1. Study Population. A total of 45 subjects were included
in this study—COPD (N = 14), Z-A1ATD (N = 5), cystic
fibrosis (N = 15), and controls (N = 11). Study subjects
were recruited from the respiratory clinics in Beaumont
Hospital. All were diagnosed by standard criteria; individuals
with CF were genotyped for CFTR mutations and had
positive sweat testing of chloride >60 mmol/L; all individuals
with Z-A1AT deficiency were homozygous for the Z allele
and had serum A1AT <11 μM; individuals with COPD had
obstructive lung disease and a history of smoking. The
majority of Z-A1AT deficiency and COPD study subjects had
computed tomography evidence of emphysema. Individuals
with known autoimmune diseases (e.g., connective tissue
disorder, Graves disease), less than 18 years of age, or refusal
to give consent were excluded from the study. None of the
study subjects were on systemic corticosteroids. The control
subjects were recruited from a nonpaid group of patients
who were nonsmokers and were attending our respiratory
outpatient unit for investigation of haemoptysis or chronic
cough. Smoking and second-hand smoke exposure were
excluded by history alone. All participants gave written,
informed consent to participate in the study, which was
approved by Beaumont Hospital Ethics Committee.

2.2. Pulmonary Function Testing. Pulmonary function tests
of study subjects were measured using a spirometer using
the acceptability standards outlined by the American Tho-
racic Society (ATS)/European Respiratory Society (ERS).
Pulmonary function tests were performed three times in
each subject with an acceptable technique. The predicted
values of forced expiratory volume in one second (FEV1) are
calculated according to the patient’s age, height, gender, and
ethnicity utilizing consistent reference values.

2.3. Bronchoscopy. Following informed consent using a
protocol approved by Beaumont Hospital Ethics committee
subjects underwent bronchoalveolar lavage (BAL) via a
flexible fibreoptic bronchoscope. The upper respiratory tract
was anaesthetized with 2% lignocaine. Supplemental oxygen
was given throughout the procedure as a routine, and
the oxygen saturation was monitored by continuous pulse
oxymeter. Sixty mls of normal saline were instilled and
suctioned back through the bronchoscope. The dilution
factor of BAL fluid (BALF) was corrected by measuring total
protein via Bradford assay.

2.4. Antielastin ELISA. Antielastin IgG antibodies in BALF
were quantified by using a modified ELISA as described pre-
viously [6]. Assays were performed in duplicate. Anti-IgM,
anti-IgA, anti-IgD, and anti-IgE antibodies were detected in
a similar manner using appropriate secondary antibodies.

2.5. Neutrophil Elastase (NE) Activity Assay. NE activity
was quantified in BALF using the NE substrate 3 mM
N-methocysuccinyl-Ala-Ala-Pro-Val-p-nitroanilide (Sigma
Aldrich). The changes in absorbance at 405 nm were
recorded at 1-minute interval for 5 minutes and compared
with an NE standard (Elastin Products Company) of known
activity.

2.6. Cell Culture. Human lymphoblastic Jurkat E6.1 T cells
(European Collection of Animal Cell Cultures, Salisbury,
U.K.) were cultured in RPMI 1640 containing 10% FCS,
1% penicillin and streptomycin (Sigma-Aldrich) and were
maintained at 37◦C in a humidified atmosphere of 5% CO2.
Jurkat T cells (1 × 105) were cultured in 24-well plates onto
which anti-CD3 mAb (R&D systems) had been immobilized.
Wells were coated for 3 h at 37◦C with 300 μL PBS containing
5 μg/mL anti-CD3 and washed three times with PBS before
use. Cells were treated with BALF that contained antielastin
or without antielastin antibodies. IL-12 (10 ng/mL) and IL-
18 (30 ng/mL) (R&D systems) were used as a positive control.

2.7. Antielastin Antibody Depletion from BALF. Isopropanol
was removed from a 1 mL HiTrap NHS-activated HP resin
(GE Healthcare) column with 1 mM HCl prior to ligand cou-
pling. Coupling with 0.5 mg/mL of elastin peptide (Elastin
Product Company) was carried out for 30 minutes. Washing
and deactivation of nonspecifically bound ligand was carried
out as per the manufacturer’s instructions. After further
washing, antielastin antibodies were depleted from BALF by
passing it through the elastin-linked column. The eluate was
retained for Jurkat cell stimulation studies.

2.8. Cell Proliferation Assay. Cell proliferation assays were
performed by adding 20 μL of CellTiter 96 Aqueous One
Solution Proliferation Assay in a humidified, 5% CO2

atmosphere for 4 hours (Promega, Madison, WI) to culture
wells that contained anti-CD3 Jurkat T cells treated or not
for 24 h with BALF. IL-12 (10 ng/mL) and IL-18 (30 ng/mL)
(R&D systems) were used as a positive control. Absorbance at
490 nm was then measured using a 96-well microplate reader.

2.9. Statistics. Data are expressed as mean ± SD or ±
SEM, as indicated. Test of normality was performed by the
Kolmogorov-Smirnov test. All data were of nonparametrical
distribution. Differences between two individual groups or
more than two groups were assessed by t-test or ANOVA as
appropriate. Statistical tests were performed using SPSS 15.0
and Prism 4.0 software. P values <.05 were considered to be
significant.
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Figure 1: Total antielastin antibodies in bronchoalveolar lavage
fluids were quantified in control (N = 11), COPD (N = 14), Z-
A1ATD (N = 5) and CF (N = 15) samples by ELISA.

3. Results

3.1. Study Population Characteristics. A total of 45 individ-
uals were included in this study (control, n = 11; COPD,
n = 14; Z-A1AT deficiency, n = 5; CF, n = 15). Table 1
provides details of their baseline characteristics, and Table 2
provides the severity of disease in COPD, Z-A1AT deficiency
and CF based on the predicted percentage of FEV1.

3.2. Bronchoalveolar Lavage Fluid (BALF) Antielastin Autoan-
tibodies (IgG, IgM, IgA, IgD, and IgE). BALF levels of
antielastin autoantibodies were quantified in individuals
with COPD, Z-A1AT deficiency or CF and compared to
controls. The results are shown in Figure 1. There is a
trend towards higher BALF antielastin antibodies in Z-A1AT
deficiency and COPD compared to controls. There is a
significant reduction in BALF antielastin antibodies in CF
compared to controls (P = .0008).

3.3. Neutrophil Elastase (NE) Activity. We speculated that NE
may be the factor responsible for the significantly lower BALF
antielastin antibodies in the CF group. NE activities were
measured in all 4 groups as shown in Figure 2. Similar to
control BALF the COPD and Z-A1ATD samples did not have
detectable NE activity. Free NE was detectable in CF BALF
and levels were significantly higher than controls (P < .0001).

3.4. Neutrophil Elastase Degrades Antielastin Autoantibodies.
In order to confirm that the high burden of NE in the
CF BALF is responsible for degrading BALF antielastin
antibodies, five non-CF BALF samples with high antielastin
antibodies levels were left untreated or treated with NE for
24 hours and antielastin antibody levels were quantified
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Figure 2: Neutrophil elastase activity. Neutrophil elastase activities
were measured in bronchoalveolar lavage fluids of controls (N = 8)
or patients with COPD (N = 5), Z-A1ATD (N = 5) or CF (N = 13)
using N-methocysuccinyl-Ala-Ala-Pro-Val-p-nitroanilide.
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Figure 3: Antielastin antibodies levels pre- and post-NE. Bron-
choalveolar lavage fluid antielastin antibodies levels were measured
from 5 non-CF individuals pre- and post-NE treatment by ELISA
where 1 μM NE was added to 100 μL BALF samples for 24 hours.

pre- and after treatment. Figure 3 shows that there is a
significant reduction in BALF antielastin antibodies post-
NE treatment (P = .0476) confirming that NE can degrade
BALF antielastin antibodies and suggesting that in the CF
lung excessive levels of NE are responsible for the low BALF
antielastin antibodies evident in this group.

3.5. COPD and Z-A1ATD BALF Can Induce T Cell Prolif-
eration. Next, we assessed the potential functional effects
of elevated antielastin antibodies in the COPD and Z-
A1ATD lung. Given that COPD is known to be associated
with increased intrapulmonary CD8+ T cell numbers, we
investigated the effect of antielastin antibodies on T cell
proliferation in vitro. CD3-activated Jurkat T cells were
treated with BALF; costimulation with IL-12 and IL-18 was
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Table 1: Patient characteristics.

Control COPD Z-A1ATD CF

No. of subjects 11 14 5 15

Age, yr (±SD)1 59.3 ± 24.1 67.1 ± 8.9 41.6 ± 19.8 28.3 ± 10.2

Sex, % M/F2 73/27 64/36 60/40 53/47

BMI3, kg/m2 (±SD)1 25.6 ± 1.7 24.8 ± 5.3 27.3 ± 3.2 24.1 ± 2.3

FEV14, % predicted (±SD)1 — 45.6 ± 23.0 92.0 ± 25.7 43.5 ± 26.4

FVC5, % predicted (±SD)1 — 74.4 ± 29.2 106.6 ± 16.5 62.1 ± 23.4
1±SD, ±standard deviation.
2M/F, male/female.
3BMI, body mass index.
4FEV1, forced expiratory volume in 1 second.
5FVC, forced vital capacity.

Table 2: The severity of disease in COPD, Z-A1ATD, and CF based
on the predicted percentage of FEV1.

COPD Z-A1ATD CF

FEV1 (>80% predicted) 14% 40% 6%

FEV1 (50–80% predicted) 21% 60% 27%

FEV1 (30–50% predicted) 36% — 27%

FEV1 (<30% predicted) 29% — 40%

used as a positive control. Cell proliferation assays were
performed, and the results are shown in Figure 4. Compared
to control cells, IL-12/IL-18 stimulation induced T cell
proliferation. Stimulation with COPD or Z-A1ATD BALF
also caused T cell proliferation albeit less potently than the
positive control.

3.6. Depletion of Antielastin Antibodies from BALF Decreases T
Cell Proliferation. Using an elastin-conjugated resin column,
we removed the antielastin antibodies from Z-A1ATD BALF
and used the filtrates to stimulate T cell proliferation
(Figure 5). Compared to complete BALF, the antielastin
antibody-depleted BALF induced less T cell proliferation,
(P = .05). This implicates antielastin antibodies as a factor
contributing to the T cell proliferative properties of Z-A1AT
BALF.

4. Discussion

A number of studies have suggested that COPD is likely
to have an autoimmune component [4, 10, 11]. Although
we have previously reported a lack of elevated systemic
antielastin autoantibody levels in COPD or other chronic
inflammatory lung disease patients that is Z-A1ATD and
CF, here, we present data showing that antielastin antibody
levels in bronchoalveolar lavage fluid tend to be higher in
COPD and Z-A1ATD compared to controls. Although the
results are not significant the number of patients in each
group is small. Nonetheless our findings support the concept
that local intrapulmonary autoimmunity may contribute to
disease pathogenesis in emphysema.

In an attempt to identify a functional role for the higher
than normal levels of antielastin autoantibodies in the COPD
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Figure 4: Effect of COPD and Z-A1AT BALF on T cell proliferation.
T cell proliferation was measured in (1 × 105) CD3-activated Jurkat
T cells left untreated, stimulated with IL-12 (10 ng/mL) and IL-
18 (30 ng/mL) or with Z-A1ATD BALF (500 μL) or COPD BALF
(500 μL) for 24 hours at 37◦C (n = 3).

and Z-A1ATD lung, we focussed on their possible impact on
T cell proliferation. We did this because COPD is associated
with higher than normal intrapulmonary numbers of T cells
[12–14]. Our investigations revealed that COPD and Z-
A1ATD BALF could induce proliferation of CD3-activated
Jurkat T cells. It is already known that IL-18 is elevated in
COPD BALF [15], and this likely contributes to the enhanced
T cell proliferation observed in cells stimulated with BALF.
However, our data clearly implicates antielastin antibodies
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Figure 5: Effect of depletion of antielastin antibodies from Z-
A1ATD BALF on T cell proliferation. T cell proliferation was
measured in (1 × 105) CD3-activated Jurkat T cells treated for 24
hours at 37◦C with intact Z-A1ATD BALF (500 μL) or BALF from
which antielastin antibodies had been depleted (n = 3).

as a further factor in BALF potentially responsible for T
cell proliferation. Specific depletion of these antibodies from
BALF significantly decreased the T cell proliferative effect
of Z-A1ATD BALF. Additional experiments such as spiking
of BALF with purified antielastin antibodies or additional T
cell functional studies quantifying cytokine expression were
unfortunately not possible here due to sample limitation.

A secondary finding of this work was the interesting
observation that antielastin antibody levels are significantly
lower in the CF lung compared to healthy controls and that
the serine protease neutrophil elastase may be responsible for
degradation of these autoantibodies in vivo. The CF lung is
a milieu with a high-protease burden [16–18]; endogenous
and pathogen-derived proteases contribute significantly to
a dysfunctional innate immune response [19]. NE, the
most abundant serine protease in the CF lung, can cleave
a wide range of substrates including cell surface recep-
tors, extracellular matrix proteins, cytokines, antiproteases,
defensins, and immunoglobulins [19, 20]. For example, NE
can degrade IgM rheumatoid factor [21, 22]. Our data
shows that antielastin antibodies represent a new subclass of
immunoglobulins that can be degraded by NE. Although we
did not evaluate the effect of other pulmonary proteases on
antielastin antibody degradation in this study, it would be
interesting to know whether other classes of proteases such
as cysteine or metalloproteases induce a similar effect.

Interestingly T cell infiltration is not a major feature of
CF, and the lack of antielastin autoantibodies in the CF lung
represents a good corollary to COPD, where both increased
numbers of T cells and higher than normal antielastin anti-
bodies have been detected. Ongoing studies will determine
T cells number in vivo in the Z-A1ATD lung. During acute
exacerbations in COPD or Z-A1ATD patients, NE levels rise
sharply possibly leading to antielastin autoantibody degrada-
tion that may impact on T cell proliferation. Further studies
to determine whether targeting antielastin autoantibodies
could have therapeutic implications for patients with COPD
and Z-A1ATD are warranted.

5. Conclusion

In conclusion, our findings show that BALF antielastin
autoantibodies are present in COPD and Z-A1ATD but not
in CF, and these antibodies can cause T cell proliferation.
The lack of antielastin antibodies in CF is due to NE in
degradation.
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