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Figure S1.  Quantification of neuronal cell death after NMDA treatment. Neocortical neurons were treated with 100 µM NMDA or sham for 5 min and al-
lowed to recover for 16 or 24 h. Neurons were then stained with 1 µg/ml PI and 1 µg/ml Hoechst for 10 min. The number of PI-positive nuclei and Hoechst-
stained pyknotic nuclei was quantified and expressed as a percentage of total cells in the field. Three subfields containing 200–300 neurons each were 
captured and quantified per culture. Data represent mean ± SEM from n = 4 cultures. *, P < 0.05 compared with sham-treated cultures.
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Figure S2.  Up-regulation of Bim in OHSCs subjected to NMDA-induced excitotoxic injury. (A) OHSCs were treated with 300 µM NMDA or exposed to 
sham conditions (experimental buffer without NMDA) for 30 min and allowed to recover for 24 h. Cell death was assessed by PI staining. (B) Total RNA 
was extracted, and qPCR analysis of bim expression was performed. Expression levels were normalized to -actin levels and expressed relative to the levels 
found in sham-treated neurons. Error bars show SEM. *, P < 0.05 (ANOVA post-hoc Tukey). (C) Western blot analysis of Bim expression after NMDA excita-
tion was performed as described in A. Probing for -actin served as a loading control. Results are representative of at least two independent experiments. 
The vertical black line indicates that intervening lanes have been spliced out. Bar, 500 µm.  on July 24, 2013
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Figure S3.  AMPK activation triggers Bim-dependent cell death in CGNs. (A) CGNs were treated with 2.5 mM AICAR for the indicated time periods, and 
whole cell lysates were prepared for Western blot analysis using the indicated antibodies. Results are representative of at least two independent experi-
ments. (B) CGNs were transfected with either a bim or a control (con) siRNA, cultured for a further 24 h, and then subsequently transfected to express  
CA-AMPK or empty vector. After a further 24 h of culture, pyknotic nuclei were quantified by Hoechst staining. Three subfields containing 300 neurons 
each were captured and quantified per well. Data represent mean ± SEM from n = 4 cultures. *, P < 0.05 compared with control siRNA–transduced neu-
rons expressing CA-AMPK (ANOVA post-hoc Tukey).  on July 24, 2013
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Figure S4.  JNK inhibition protects against excitotoxic apoptosis. (A) Mouse neocortical neurons were treated with 100 µM NMDA for 5 min or exposed 
to sham conditions in the presence or absence of the JNK inhibitor SP600125, and whole cell lysates were prepared at the indicated time periods. Western 
blot analysis was performed to determine the levels of phospho Thr183/Thr185 JNK, total JNK, and Bim. Actin served as a loading control. Results are 
representative of at least two independent experiments. (B) Mouse neocortical neurons were treated with 100 µM NMDA for 5 min with or without pretreat-
ment with 10 µM of the JNK inhibitor SP600125. Pyknotic nuclei were quantified after 24 h by Hoechst staining. Three subfields containing 200–300 
neurons each were captured and quantified per well. Data represent mean ± SEM from n = 4 cultures. This experiment was repeated twice with similar re-
sults. *, P < 0.05 compared with NMDA treatment alone (ANOVA post-hoc Tukey). (C) OHSCs from WT mice were incubated with or without 10 µM 
SP600125 and exposed to 50 µM NMDA for 30 min. The slices were returned to the incubator in the presence or absence of the JNK inhibitor and main-
tained for 24 h before the assessment of apoptosis by PI staining. (D) Quantification of cell death levels in the CA1 region of OHSCs treated was performed 
as described in C. Data represent mean ± SEM from n = 3 slices. This experiment was repeated twice with similar results. *, P < 0.05 compared with 
NMDA alone (ANOVA post-hoc Tukey). Bar, 500 µm.
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Figure S5.  Compound C reduces NMDA-induced excitotoxic injury. Neocortical neurons were pretreated with or without 10 µM compound C (Cpd C) for 
30 min before the addition of 100 µM NMDA for 5 min and allowed to recover for 16 h before the number of pyknotic nuclei was scored as described in 
Materials and methods. Three subfields containing 200–300 neurons each were captured and quantified per well. Data are mean ± SEM from n = 4  
cultures. *, P < 0.05 compared with NMDA alone (ANOVA post-hoc Tukey).
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