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Abstract: 

Carriers are often an essential element of drug delivery, bestowing attributes to their cargo such as 

biocompatibility, enhanced delivery, extended half-life and efficacy as well as mediating specific 

targeting at a tissue, cell or intracellular level.  Liposomes and lipid-based carriers have been 

investigated for decades for this purpose, many achieving clinical approval including products such as 

Doxil™ and Myocet™.  However, reports also indicate issues with the use of cationic lipids, toxicity in 

particular.  It is important to consider that carrier or vector systems engineered to efficiently deliver a 

drug may not be inert.  Large-scale compound screens are routinely carried out in the field of drug 

discovery; however less work has been done on harnessing high throughput methods for carrier 

material screening. Screening the interaction of drug carriers and materials with cells is particularly 

critical for the development of emerging therapies, including biomedicines, in order to facilitate the 

development of safe and efficient drug products.  Herein, a range of liposomes of neutral, anionic and 

cationic charge and others that are surface-modified with mannose residues were screened for cell 

interaction, toxicity and immune reactivity in THP-1-derived macrophages using a high throughput 

format.   
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Introduction 

Over the last decade high throughput screening of compound libraries has become a significant 

phase in the drug discovery and development process. With a growing range of materials now being 

developed for use as drug carriers, a need for high throughput screening methods for drug delivery 

systems is equally critical. This is of particular importance for cellular delivery where an understanding 

of cellular interaction, uptake and cytotoxicity is critical when comparing and optimising delivery 

systems (Forbes et al., 2014).   

 

Liposomes have been evaluated for decades as drug carriers due in part to their versatility.  They 

boast a great number of benefits over other drug carrier systems such as the capability of entrapping 

a wide range of drugs, biocompatibility and low toxicity (Malmsten, 2002) and are the most 

extensively explored delivery system for phagocyte-targeted therapies. Drug delivery to phagocytic 

cells such as monocytes, dendritic cells and macrophages represents an important therapeutic 

approach to treat inflammatory diseases and pathogenic infections through manipulation of the 

immune response.     

 

Liposome drug delivery systems can be formulated to exploit the physiological role of cells to provide 

specific targeting and enhance drug efficacy. Currently, there are several FDA approved liposome-

based products available for the delivery of drugs such as amphotericin B (AmBisome®, ABELCET® 

and Amphocil) and doxorubicin (Doxil®) (Puri et al., 2009).  Although there are a number of 

amphotericin B liposome therapeutics available, the configuration of each differ considerably in terms 

of lipid composition, shape, size, stability, pharmacokinetics and toxicity. For example AmBiosome® 

liposomes are spherical in structure and <100 nm in diameter whereas ABELCET® liposomes are 

ribbon-like structures, 1.6 µm-11µm in diameter and associated with mild nephrotoxicity  (Adler-Moore 

and Proffitt, 2008).   

 

Cationic liposomes are associated with efficient cellular delivery of drug cargoes and are routinely 

applied for in vitro gene delivery (Zuhorn et al., 2007).  Electrostatic interactions between positively 

charged liposomes and negatively charged cell membranes and cell surface proteoglycans (Wiethoff 

et al., 2001) facilitate cell uptake.  Unfortunately, cationic liposomes can cause cytotoxicity, thereby 



limiting their safety for clinical use (Lv et al., 2006).  Cationic liposomes containing stearylamine (SA) 

have previously been shown to induce apoptosis through mitochondrial pathways in RAW264.7 

macrophages by generating reactive oxygen species (ROS), releasing cytochrome c, caspase-3 and -

8 and activating protein kinase C delta (PKCδ) possibly through cell surface proteoglycan interaction 

(Iwaoka et al., 2006, Aramaki et al., 2001, Arisaka et al., 2010, Takano et al., 2003).  Consequently, 

interest has turned to neutral and anionic liposomes for drug delivery applications.   

 

Several studies have shown enhanced uptake of anionic liposomes by macrophages.  In eukaryotic 

cells, apoptosis results in phosphatidylserine (PS), an anionic lipid, being exposed on the outer cell 

surface and the stimulation of monocytic phagocytosis, most likely via scavenger receptors (SRs) 

(Moghimi and Hunter, 2001) and cell-surface glycoproteins (Kobayashi et al., 2007).  Therefore PS 

composed liposomes could target these receptors.  Another strategy for liposomal macrophage 

targeting involves coating liposomes with ligands such as antibodies, peptides and lectins (Kelly et al., 

2011).  For instance, mannosylated liposomes target the mannose receptor (MR) of macrophages 

and facilitate improved cellular uptake both in vitro and in vivo over non-ligand coated liposomes 

(Chono et al., 2009, Chono et al., 2007, Engel et al., 2003, Espuelas et al., 2008, Wijagkanalan et al., 

2008b, Kawakami et al., 2000a, Kawakami et al., 2000b). The MR is involved in a range of processes 

including the recognition and internalisation of both foreign and self-materials, antigen presentation 

and intracellular signalling (Gazi and Martinez-Pomares, 2009).  Moreover, mannose receptor 

activation has been linked to the initiation of an anti-inflammatory immunosuppressive programme in 

cells (Chieppa et al., 2003) and impaired NFκB activation (Xu et al., 2010), thus arguing for the utility 

of targeting strategies aimed at binding the MR, such as mannosylated liposomes.   

 

Hence, it is clear from the outset that targeted drug carriers can elicit responses related to not only 

toxicity and immune reactivity in macrophages but also more subtle cell signalling pathway effects. 

When tasked with developing a macrophage-targeted delivery system it is therefore critical that 

comprehensive and rapid tools are available for screening of potential carriers to determine lead 

formulations for progress to pre-clinical in vivo testing. In this study, a range of different liposomes 

were prepared representing cationic, anionic, uncharged (neutral) and coated (mannosylated) classes 

and high throughput in vitro screening techniques were explored to assess targeted uptake, 



cytotoxicity and ability to activate macrophages in a human macrophage cell model. Liposomes were 

seen to be efficacious in a concentration-dependent and mannosylated cholesterol linker length-

dependent manner. 



Methods 

 

Liposome Preparation 

Cholesten-5-yloxy-N-(4-((1-imino-2-α-thioglycosylethyl)amino)butyl)formamide (Mann-C4-Chol) and 

its C2 and C6 derivatives were synthesized using a method described previously by Kawakami et al. 

(Kawakami et al., 2000a).  Mannosylated cholesterol derivatives differ by their carbon linker lengths 

(C2, C4 and C6).  Phospholipids 1,2-Dioleoyl-3-trimethylammonium-propane (DOTAP), 1,2-dioleoyl-

sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) and 1,2-

dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (PE-rhodamine) were 

purchased from Avanti Polar Lipids Inc. Liposomes containing phospholipids, mannosylated 

cholesterol and cholesterol were formed by dehydration-rehydration.  Briefly, the liposome 

components were dissolved in a minimal volume of Folch (Chloroform: Methanol; 2:1 (v/v)) and mixed 

in a round bottomed flask at the molar ratios described in Table 1.  PE-Rhodamine (0.1% of mole 

ratio) was added to fluorescently label liposomes.  Solvents were evaporated using a rotary 

evaporator (Büchi Rotavapor R200) and the lipid film was rehydrated in pH 7.4 Phosphate Buffered 

Saline (PBS; GIBCO).  Size reduction of rehydrated lipids was achieved by extrusion using a LIPEX™ 

Thermobarrel Extruder or Avanti® Mini-Extruder 10 times through a polycarbonate membrane filter 

with 100, 200, 400 or 1000 nm pores (Whatman).    

 

Liposome Characterization 

Liposome concentration was determined using cholesterol and phospholipid assays (WAKO).  Size 

and zeta potential were determined using a zetasizer (nanoseries, Malvern).  For transmission 

electron microscopy (TEM) studies copper thin bar 200-mesh grids were coated with pioloform.  

Liposomes (2µl) were placed on the grid for 1 minute and blotted. The grid was negatively stained 

with a drop of (2% w/v) phosphotungstic acid (PTA) for 1 minute and again blotted followed by 

washing with deionized water. The grids were viewed the same day using a Hitachi H-7650 TEM.   

 

Cell Culture 

Human monocyte THP-1 cells were maintained in RPMI 1640 (BioSera) supplemented with 10% heat 

inactivated fetal bovine serum (FBS, BioSera) in a humidified atmosphere at 37°C and 5% CO2.  



THP1-XBlue™ cells are stably transfected THP-1 cells expressing secreted embryonic alkaline 

phosphatase (SEAP) gene which is induced by the transcription factors NF-κB and activator protein-1 

(AP-1).  THP1-XBlue™ cells were maintained in RPMI 1640 supplemented with 10% heat inactivated 

FBS and 200µg/ml of selection marker Zeocin™.  Cells were differentiated by the addition of 100nM 

phorbol myristate acetate (PMA) and incubated in a humidified incubator at 37°C and 5% CO2 for 72 

hours.  

 

Immunofluorescence Microscopy to Determine Mannose Receptor Expression  

THP-1 cells were seeded at 1x105 cells/ml in 96-well plates, differentiated and fixed with 4% 

paraformaldehyde (PFA) for 20 minutes.  Cells were blocked with 1% bovine serum albumin (BSA) 

and incubated with 0 or 1 μg/ml rabbit polyclonal mannose receptor antibody (Abcam) followed by 

goat anti-rabbit secondary antibody Alexa Fluor® 488 and counterstained with Hoechst 33342 and 

phalloidin-tetramethyl rhodamine isothiocyanate (TRITC).  Images were acquired using an INCELL 

1000 cell analyser and 10x objective. 

 

Liposome-Cell Interaction Study: High Content Cell Analysis 

A High Content Cell Analysis (HCA) method was developed for analysis of liposome-cell interaction to 

enable high throughput studies.  THP-1 cells were differentiated at a density of 1x105 cells/ml in 96-

well plates.  Rhodamine-labelled anionic, neutral and mannosylated liposomes were incubated with 

differentiated THP-1 cells in triplicate according to Table 2.  Cells were washed, fixed with 4% PFA 

and stained with phalloidin-fluorescein isothiocyanate (FITC) and Hoechst 33342.  HCA was carried 

out using INCELL 1000 analyser.  Images were acquired in three channels; excitation/emission 

wavelengths of 360/460nm (Hoechst 33342), 480/535nm (phalloidin-FITC) and 535/600nm 

(rhodamine tagged liposomes), 5 fields per well and analysed using INCELL1000 analyser software.  

Multi-target analysis module was used to segment nuclei, cells and liposomes (Figure 2) and count 

the number of liposomes associated with the identified cell regions.   

 

Liposome High Content Toxicity Screen 

Cellomics® Multiparameter Cytotoxicity 3 kit and an INCELL 1000 analyser were used to determine 

cytotoxicity following liposome treatment in differentiated THP-1 cells.  Cells were seeded in flat-



bottomed 96-well plates and were treated with rhodamine-labelled anionic, neutral and mannosylated 

liposomes at concentrations of 0, 100 or 300μM in triplicate and incubated at 37°C for 23.5 hours.  

Valinomycin (120μM) served as a positive toxic control.  Permeability and mitochondrial membrane 

potential (MMP) dyes were added to wells and incubated at 37°C for 30 minutes.  Cells were fixed 

with 4% PFA, permeablised and blocked.  Cytochrome c staining was carried out using a cytochrome 

c primary antibody and DyLight 649 secondary antibody.  Nuclei were stained using Hoechst.  Images 

were acquired by an INCELL 1000 analyser within 24 hours in 4 fields per well using 

excitation/emission wavelengths of 360/460nm (Hoechst 33342 dye), 480/535nm (Permeability dye), 

535/600nm (MMP dye) and 620/700nm (DyLight 649).  Cell loss, nuclear area, nuclear intensity, 

cytochrome c release, mitochondrial membrane potential and cell permeability were determined using 

INCELL analysis software using multi-parameter target analysis and the settings in Table 3.  Images 

were acquired at 10x objective magnification.   

 

Macrophage Activation Screen 

THP1-XBlue™ cells (NF-κB/AP-1 Reporter Monocytes) were differentiated for 72 hours at 1x106 

cells/ml in a 96 well plate.  PMA free media was replaced daily for a further 5 days to remove residual 

PMA.  Liposomes were added to cells in fresh media at 0, 100, 200 and 300μM final concentration in 

triplicate.  Cells were stimulated with 100ng/ml lipopolysaccharide (LPS) as a positive control.  After 

24 hours 20µl of media was removed and added to 180µl of QUANTI-Blue™.  After a 4 hour 

incubation absorbance was measured at 630nm using a multiplate reader to determine SEAP activity.  

 

THP-1 cells were differentiated in 24 well plates at 1x105 cells/ml.  Cells were incubated in fresh 

complete media (untreated); RPMI supplemented with 100ng/ml LPS or anionic, neutral, cationic or 

mannosylated liposomes at 100μM or 300μM for 24 hours.  Media was collected and stored at -80°C 

until assayed.  Production of a range of cytokines secreted following macrophage activation (IFNγ, IL-

1β, IL-2, IL-4, IL-5, IL-8, IL-10, IL-12p40, IL-13 and TNFα) were simultaneously determined using a 

MesoScale Discovery (MSD) multiplex assay.  MSD plates were analysed on a SECTOR Imager 

using the MSD DISCOVERY WORKBENCH® software. 

 

 



Statistics 

Results are expressed as means ± SD.  One way or two way ANOVA was used to test for differences 

between treatments with p-values < 0.05 considered significant, < 0.01 very significant and < 0.001 

highly significant. 



Results 

 

Liposome Characterization 

Particle size and zeta potential were determined for each batch of liposomes prepared.  Spherical 

liposomes (Figure 1) with representative average sizes for 3 batches following extrusion through 

200nm pore filters of cationic, anionic, neutral and mannosylated liposomes shown in Table 4 with 

polydispersity indices (PDI) of less than 0.227.  The zeta potential of liposomes composed of 50% 

cationic lipid DOTAP was 61.8 ± 6mV whilst anionic, neutral and mannosylated (MC6C) liposomes 

had mean surface charges of -68.3 ± 8mV, -4.4 ± 3mV and 45.2 ± 3mV. 

 

THP-1 cells as a Macrophage Cell Model: Mannose Receptor Expression 

THP-1 cells are a monocytic cell line that can be differentiated by phorbol esters into macrophage like 

cells (Tsuchiya et al., 1982, Daigneault et al., 2010, Lawlor et al., 2012, O'Sullivan et al., 2007) which 

express both SRs and MRs upon differentiation (Kohro et al., 2004, Liao et al., 1999). The visible 

presence of Alexa Fluor 488 (green fluorescence) in Figure 3B demonstrates MR expression in 

differentiated THP-1 cells, confirming this cell line as an appropriate in vitro model for mannosylated 

liposome targeting.  

 

High Content Cell Analysis (HCA) of Liposome Interaction with THP-1 cells 

A HCA protocol was established to count liposomes per cell.  Several conditions were screened 

including a range of liposome sizes (100nm to >1μm in diameter), concentrations (0 to 1mM), 

incubation times (0.5 to 24 hours) and temperatures (4 and 37°C).  Overall, HCA data (Figure 4) 

indicates that DOPS and mannosylated liposomes had significantly better cellular association 

compared to untargeted DOPC controls.   

 

Size can contribute significantly to cellular uptake efficiency of liposomes.  Cell association of anionic 

DOPS liposomes increased with increasing particle size (Figure 4G) while neutral DOPC and MC2C 

and MC4C mannosylated liposomes showed an increase up to 200nm however the cell association 

decreased with particles ≥ 400nm in diameter.  The most significant increases in liposome cell 

association when compared to unextruded counterparts were of MC4C 200 and 400nm (p < 0.001) 



and MC6C 200nm (p < 0.001) (Figure 4G).  DOPS and MC6C liposomes showed the greatest level of 

cell association with DOPS liposome association size dependent and MC6C liposome size 

independent in the 100 - 1000nm range.  In general, increasing liposome concentration lead to an 

increase in THP-1 cell association.  Significant increase in targeted liposome cell association 

particularly DOPS and MC6C liposomes was observed compared to concentration matching non-

target DOPC liposomes at all concentrations (Figure 4H).  Cells were treated with 200nm liposomes 

at 200µM and fixed after 0.5, 1, 2, 4 and 24 hours.  Cell association of DOPC, MC2C and MC4C 

liposomes did not significantly change over 24 hours. MC6C liposome cell association was 

significantly higher at all time points in comparison to neutral DOPC counterparts.  However, DOPS 

liposome cell association was significantly enhanced following 0.5 and 1 hour treatments but 

decreased after 24 hours.  Cell association of DOPS liposomes at 24 hours was almost 4-fold less 

than association of MC6C liposomes at the same time point.  Overall, optimal concentrations were 

above 100μM (Figure 4H) and incubation times greater than 2 hours (Figure 4I) for the leading DOPS 

and MC6C liposomes.   

 

Additionally liposome cell association at 4°C and 37°C was compared.  Cells were incubated either at 

4 or 37°C with 100μM of 200nm-sized rhodamine labelled anionic (DOPS), neutral non-mannosylated 

(DOPC) and mannosylated (MC2C, MC4C and MC6C) liposomes for 2 hours. THP-1 cell association 

of DOPS, MC4C and MC6C liposomes was highly significantly impeded at 4°C (p < 0.001) suggesting 

an active uptake process (Figure 5). 

 

Liposome Toxicity: Multiparameter Cytotoxicity Testing 

Differentiated THP-1 cells were used to assess the effects of liposome treatment on cell viability. 

Cationic (DOTAP), anionic (DOPS), neutral (DOPC) and mannosylated (MC2C, MC4C and MC6C) 

liposomes at 100μM and 300μM were incubated with differentiated THP-1 cells for 24 hours, fixed and 

stained. Negative controls were incubated under normal conditions and served as the healthy cell 

comparison for other treatments.  HCA was used to acquire and analyze images based on staining for 

nuclei, cell permeability, MMP and cytochrome c.   Chromatin condensation is associated with 

apoptosis which can be monitored by changes in nuclear size and intensity. The positive control 

valinomycin induced significant cell loss (p < 0.001) (Figures 6B&6I).  Significant cell loss was also 



found following 300μM treatments of mannosylated liposomes (Figure 6I).  Valinomycin treatment 

decreased the mean nuclear area (Figure 6J) and increased the total nuclear intensity albeit not 

significantly. Increased cell permeability occurs during necrosis, however, no significant elevation in 

permeability was determined following any liposome treatment (Figure 6L).  Valinomycin, and 300µM 

DOTAP, DOPS and MC2C liposome treatments induced a fall in MMP (Figure 6M), which is 

associated with apoptosis and cytochrome c release.  

 

Macrophage Activation: NFκB Activation and Cytokine Screen 

When dealing with targeting of any immune cell, including macrophages, it is of particular importance 

that the ability to activate the cells in question is compared for different carriers. In order to assess this 

response in our model system, NFκB activation and induction of a range of cytokines were 

determined, including cytokines associated with inflammation and a TH1 response such as TNFα, IL-

1β, IL-2, IL-12p70, IFNγ and IL-8 and a TH2 response such as IL-2, IL-4, IL-5, IL-10 and IL-13 (Table 

5).  NFκB can induce transcription of many pro-inflammatory genes such as TNFα, IL-1β, IL-6 and IL-

8 (Tak and Firestein, 2001). Here activation was assessed using a NFκB reporter cell line, THP1-

XBlue™ cells, following incubation with liposomes.  LPS stimulation of differentiated THP1-XBlue™ 

cells was used as a positive control and to validate the macrophage activation screen. A significant 

increase in NFκB activation compared to untreated cells was found following 24 hour treatment with 

the positive control LPS (p < 0.001) (Figure 7).  As expected, TNFα was significantly induced by LPS 

(p < 0.05) whilst elevations in mean concentrations of IL-1β, IFNγ and IL-8 compared to untreated 

cells were also observed, further validating this screening assay.  THP1-XBlue™ cell cytotoxic and 

immune reactivity to cationic, neutral, anionic and mannosylated liposomes are discussed in detail 

below. 

 

 

Cationic DOTAP Liposomes Induce High Levels of Toxicity and a Proinflammatory Response 

from Differentiated THP-1 cells 

DOTAP liposomes induced significant cell loss while increasing cell permeability, decreasing MMP 

and promoting cytochrome c release at 100 and 300μM indicative of both apoptosis and necrosis.  

Cytochrome c intensity was significantly reduced (p < 0.05) compared to healthy control cells 



following 300μM DOTAP liposome treatment suggestive of cytochrome c release (Figure 6).  DOTAP 

liposomes also induced a proinflammatory response in the macrophage-like cells with increases in IL-

1β and IFN-γ and decreases in IL-4 being observed, although these were not statistically significant 

(Table 5). 

 

 

Neutral DOPC Liposomes Induce Minimal Toxicity and Inflammatory Cytokine Production in 

Differentiated THP1 cells 

Cell loss resulted only from 300μM treatments with DOPC liposomes in THP-1 cells however, other 

signs of apoptosis or necrosis were not observed (Figure 6).  NFκB was significantly activated (p < 

0.05) following 24 hour DOPC liposome treatment at 100μM (Figure 7) and IL-12p70 was (non-

significantly) induced by a 300μM dose of DOPC liposomes (Table 5).  In general however, DOPC 

liposome treatment in THP-1 cells resulted in reduction of immune mediators compared to untreated 

control cells. 

 

Anionic DOPS Liposomes at High Concentrations Induce Toxicity and Immune Reactivity in 

Differentiated THP1 cells 

Anionic liposomes were composed of DOPS which targets macrophage scavenger receptors by 

mimicking apoptotic cells.  At the higher concentration of 300μM DOPS, liposomes were found to 

reduce cell number and MMP, a sign of induced apoptosis (Figure 6).  Furthermore, NFκB activity was 

significantly induced (p < 0.001) at 300μM and was concentration dependent (Figure 7).  IL-8 is an 

important chemokine for neutrophil recruitment and therefore is upregulated during inflammation.  

Significant induction of IL-8 (p < 0.05) was observed after 24 hour treatment (6615.5±1400.6pg/ml) 

with 300μM DOPS liposomes (Table 5).  DOPS liposomes were the most potent inducer of cytokines 

and chemokines in differentiated THP-1 cells with all measured immune mediators induced except IL-

12p70.   

 

 

 



Mannosylated Liposomes show Immunosuppressive Effects but at High Concentrations 

Induce Toxicity in Differentiated THP1 cells 

Significant cell loss was found following cell treatment of cells with mannosylated liposomes at 300μM 

(Figure 6I), of which MC2C liposomes caused significant (p < 0.01) increase in nuclear intensity 

(Figure 6K). Of the targeted liposomes, MC2C liposomes at 300μM caused the most significant effect, 

leading to apoptosis in THP-1 cells after 24 hours with a highly significant cell loss (p < 0.001), a 

significant increase in nuclear intensity (p < 0.01) and a decrease in MMP.  MC6C liposomes 

composed of mannosylated cholesterols with longer linker length at 300μM induced significant cell 

loss but all other measures of cell health were comparable with untreated control cells.  However, 

mannosylated liposome treatment showed no significant difference in NFκB activation compared to 

untreated cells but in comparison to non-mannosylated DOPC liposome treatment at equal 

concentrations, NFκB activation was significantly lower following 200μM MC4C (p < 0.01), 300μM 

MC4C (p < 0.05), 200μM MC6C (p < 0.05) and 300μM MC6C (p < 0.05) liposome treatment (Figure 

7).  However, although MC2C liposomes did not significantly alter NFκB activation, they induced 

increased synthesis of IL-12p70 (to a lesser extent than DOPC liposomes), IFNγ (at 100μM, similar to 

MC4C), IL-13, IL-5 and IL-10, indicating that they elicited a cytokine response.   MC6C liposomes also 

led to IFNγ and IL-8 suppression compared to untreated control levels.  Previously, TNFα, IL-1β and 

cytokine-induced neutrophil chemoattractant-1 (CINC-1) levels have been monitored in vitro in 

alveolar macrophages and in vivo in rat lungs following mannosylated liposome delivery of 

dexamethasone (Wijagkanalan et al., 2008a).  However, the ability of mannosylated liposomes to 

induce immune reactivity alone has not been investigated.   

 



Discussion 

An essential step in targeted cellular delivery is internalization of the carrier system by the target cells.  

Cell interaction of liposomes has been studied using a range of techniques such as flow cytometry, 

confocal microscopy and spectrofluorimetry (Cryan et al., 2006, Wijagkanalan et al., 2008b, Lawlor et 

al. 2011, Gilleron et al., 2013).  We have developed a more powerful method for studying particle-cell 

interaction using High Content Analysis (HCA) that combines imaging and drug/carrier quantification, 

from single cells to cell populations, in a high throughput format (Hibbitts et al., 2011, Lawlor et al., 

2011).  HCA also enables multiple, parallel experiments to be carried out to optimize the liposome 

formulation for macrophage targeting.   

 

HCA assessment of liposome association with differentiated THP-1 cells showed overwhelming 

confirmation of DOPS and MC6C liposomes as lead delivery platforms (Figure 4).  Moreover, the level 

of cell interaction of mannosylated liposomes also appeared to be linker dependent with levels for 

liposomes composed of MC6C greater than those composed with MC4C which both facilitated higher 

uptake than MC2C liposomes.  Engel et al. investigated the influence of spacer length between alkyl 

mannosides and liposome surface, on liposome interaction with phagocytic cells (Engel et al., 2003).  

Spacers were 0 to 8 ethyleneoxy units long (Man0 - Man8) with longer spacers mannosylated 

liposome uptake by mannose receptor expressing cells was more enhanced.  Furthermore, Gal-C6-

Chol composed liposomes were previously shown to mediate a higher DNA transfection efficiency 

than Gal-2-Chol and Gal-C4-Chol liposomes (Kawakami et al., 1998). 

 

In general, nanoparticle-induced toxicity is connected to particle size and surface chemistry (Ai et al., 

2011).  Smaller liposomes can be more toxic than larger liposomes (Mayhew et al., 1987).  

Additionally a study previously compared the toxicity of liposomes composed of cationic (SA and 

cardiolipin), anionic (phosphatidylglycerol and phosphatidylserine) or neutral (phosphatidylcholine or 

dipalmitoylphosphatidylcholine) lipids (Mayhew et al., 1987).  Toxicity was established as inhibition of 

cell growth and determined following exposure to 200μM, 130-3000μM and 3000-4000μM cationic, 

anionic and neutral liposome formulations in a range of human cell lines (Mayhew et al., 1987).  It was 

observed that SA containing liposomes were toxic to cells and negatively charged liposomes had 

higher toxic effects on cells than similar uncharged formulations. However, inhibition of cell growth 



alone was used as a marker of toxicity. Here, HCA allowed the screening of multiple parameters 

including cell number to determine cell health in differentiated THP-1 cells following liposome 

treatment for 24 hours.  For these assays the ionophor valinomycin served as a positive control and 

validated the assay in terms of detection of changes in cell number, nuclear morphology, cell 

permeability, mitochondrial membrane potential (MMP) and cytochrome c release.  Typically, assays 

such as MTT are used to assess cell viability but this method enables more subtle changes in cell 

health to be detected with more detail.  Drugs and compounds affect cell health at various levels and 

cellular changes can vary depending on concentration and exposure time to these materials.  

Measuring a single parameter or end point may not provide the information necessary to determine 

an accurate cytotoxicity profile and under certain conditions may lead to false positive or false 

negative results (McKim Jr, 2010). 

 

Aside from toxicity, drug delivery systems can also induce immune responses, the extremes of which 

have been witnessed in clinical trials and in some cases have been fatal (Cotrim and Baum, 2008).  

To assess the effects of the liposome carriers on immune reactivity in differentiated THP-1 cells we 

looked at NFκB activation and at cytokine/chemokine induction following 24 hours treatment with LPS 

(positive control) and liposomes.  NFκB is a transcription factor that can be activated through various 

receptors including TLRs and TNF receptors and has a central role in inflammation (Tak and 

Firestein, 2001).   

 

DOTAP liposomes significantly reduced cell numbers at 100μM and 300μM (p < 0.05), increased cell 

permeability, reduced MMP and lead to significant cytochrome c release indicating the induction of 

both necrosis and apoptosis in these cells.  DOTAP is a cationic lipid that has been shown to cause 

toxicity in macrophages (Filion and Phillips, 1997, Filion and Phillips, 1998).  DOTAP liposomes also 

induced an inflammatory response in the macrophage-like cells with increases in IL-1β and IFN-γ and 

decreases in IL-4 (Table 5).  DOTAP containing liposomes at 100µM have been shown to down-

regulate TNFα synthesis in activated macrophages harvested from mice (Filion and Phillips, 1998) 

and therefore the lack of TNFα induction following DOTAP liposome treatment was expected. 

 



Activation of the mannose receptor has previously been shown to have an anti-inflammatory effect 

with impaired NFκB activation (Chieppa et al., 2003, Xu et al., 2010).  In this study, mannosylated 

liposomes reduced NFκB activation in differentiated THP-1 cells compared to non-mannosylated 

DOPC liposomes in a concentration- and mannosylated cholesterol linker length-dependent manner.  

In general this lack of immune reactivity of mannosylated liposomes was corroborated in cytokine 

screens.  

 



Conclusions 

Overall, a range of liposomes were screened for their targeting ability and biocompatibility with 

macrophage cells. HCA was applied to study the interaction of liposomes with macrophage cells, 

including representative formulations of neutral, charged and targeted liposomes. Anionic and 

mannose (MC6C) coated liposomes showed the most significant cellular interaction, specifically 

DOPS and mannosylated MC6C liposomes emerged as the leading formulations for intracellular 

delivery.  At the lower concentration range tested liposomes were non-toxic, however, DOPS 

liposomes caused an inflammatory response in differentiated THP-1 cells.  MC6C liposomes showed 

immunosuppressive characteristics such as a hampering of NFκB activation and reduced IL-8 and 

IFNγ production.  HCA allowed liposome formulation interaction with macrophages to be assessed in 

a high throughput format for the first time.  
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Tables: 
 
Table 1: Prepared liposome compositions: DOTAP (liposome positive control), DOPS (anionic), 
DOPC (neutral), mannosylated (MC2C, MC4C, MC6C) liposomes. 
 

Liposome 
Nomenclature 

Molar Ratios of Constituent Lipids 

DOTAP DOPS DOPC Cholesterol Mann-C2-Chol Mann-C4-Chol Mann-C6-Chol 

DOTAP 50   30 20       

DOPS   70   30       

DOPC     70 30       

MC2C     70 22.5 7.5     

MC4C     70 22.5   7.5   

MC6C     70 22.5     7.5 

 
 
Table 2: Liposome treatments for differentiated THP-1 cell –interaction assessment by high content 
screening 
 

HCA Assay Variable Size (nm) Concentration (μM) Time (hours) 

Liposome Size Unextruded, 100, 200, 

400, 1000 

200 2 

Liposome 

Concentration  

200 0, 50, 100, 200, 300, 

1000 

2 

Liposome Incubation 

Time 

200 200 0.5, 1, 2, 4, 24 

 
 
Table 3: Representative parameters for high content screening of liposome toxicity in THP-1 cells 
 

Parameters Wavelength (Ex/Em, nm) Analysis Settings 

Nucleus 360/460 Region growing; min. area 33.2μm2 

Cell - Collar; 11μm 

Permeability 480/535 Reference; In Cell 

Mitochondrial Membrane Potential 535/600 Reference; In Cell 

Cytochrome c 620/700 Reference; In Cell 

 

Table 4: Sizing and zeta potentials of liposomes extruded to 200nm (n = 3) 

 
Liposome Average Size (d50 nm) Polydispersity Index 

(PDI) 

Zeta Potential 

(mV) 

DOTAP 198.9 ± 39 0.214 61.8 ± 6 

DOPS 168.6 ± 28  0.227 -68.3 ± 8 

DOPC 190.3 ± 22 0.164 -4.4 ± 3 

MC2C 206.9 ± 35  0.145 36.9 ± 14 

MC4C 204.7 ± 15 0.207 44.9 ± 5 

MC6C 178.2 ± 11 0.108 45.2 ± 3 









Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 7. 

 


