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Abstract

Background: Chronic HBV infects 350 million people causing cancer and liver failure. We aimed to assess the safety and
efficacy of plasmid DNA (pSG2.HBs) vaccine, followed by recombinant modified vaccinia virus Ankara (MVA.HBs), encoding
the surface antigen of HBV as therapy for chronic HBV. A secondary goal was to characterize the immune responses.

Methods: Firstly 32 HBV e antigen negative (eAg–) participants were randomly assigned to one of four groups: to receive
vaccines alone, lamivudine (3TC) alone, both, or neither. Later 16 eAg+ volunteers in two groups received either 3TC alone
or both 3TC and vaccines. Finally, 12 eAg– and 12 eAg+ subjects were enrolled into higher-dose treatment groups. Healthy
but chronically HBV-infected males between the ages of 15 – 25 who lived in the western part of The Gambia were eligible.
Participants in some groups received 1 mg or 2 mg of pSG2.HBs intramuscularly twice followed by 56107 pfu or
1.56108 pfu of MVA.HBs intradermally at 3-weekly intervals with or without concomitant 3TC for 11–14 weeks. Intradermal
rabies vaccine was administered to a negative control group. Safety was assessed clinically and biochemically. The primary
measure of efficacy was a quantitative PCR assay of plasma HBV. Immunity was assessed by IFN-c ELISpot and intracellular
cytokine staining.

Results: Mild local and systemic adverse events were observed following the vaccines. A small shiny scar was observed in
some cases after MVA.HBs. There were no significant changes in AST or ALT. HBeAg was lost in one participant in the higher-
dose group. As expected, the 3TC therapy reduced viraemia levels during therapy, but the prime-boost vaccine regimen did
not reduce the viraemia. The immune responses were variable. The majority of IFN-c was made by antigen non-specific
CD16+ cells (both CD3+ and CD3–).

Conclusions: The vaccines were well tolerated but did not control HBV infection.

Trial Registration: ISRCTN ISRCTN67270384
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Introduction

Hepatitis B virus (HBV) is a noncytopathic, hepatotropic DNA

virus that can cause acute or chronic hepatitis (reviewed in

[1,2,3,4,5,6,7,8]). An effective preventative vaccine is available

[9,10,11], however chronic HBV infection remains a serious

public health burden in 5 to 10% of the world population, causing

slightly over 50% of the cases of primary liver cancer worldwide

[12,13,14]. Therapeutic vaccination could offer a curative

treatment option. Two important questions arise for immuno-

therapy: what kind of immune response is needed? What epitopes

or antigens should comprise the vaccine?
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Immune response to HBV
The immune response to HBV infection is complex and poorly

understood in several important aspects. The antibody response is

first to the core antigen (HBcAg) which does not predict control of

the virus. HBV infection is clinically heterogeneous, ranging from

completely asymptomatic to fatal, fulminant hepatitis, or to

chronic liver failure, cirrhosis or hepatocellular carcinoma. There

is no simple, quantitative relationship between the level of

viraemia and the presence or severity of symptoms [15].

Nevertheless a meta-analysis concluded that there are statistically

significant correlations between viraemia and histologic grading

and biochemical and serological response [16]. The immune

system is essential for HBV clearance [7,17,18]. The desired end

point of therapy ought to be elimination of detectable viraemia

[16].

Effector mechanisms
Resolution of HBV infection is associated with vigorous and

polyclonal HBV-specific CTL [19] activity directed against

multiple HBV epitopes in the viral nucleocapsid, envelope and

polymerase proteins [20,21], whereas the CTL response is weak or

absent in chronic carriers [22,23]. The impaired T-cell responses

can be restored transiently by 3TC therapy [24,25,26,27]. Non-

cytolytic mechanisms of viral control are expected on theoretical

grounds [28] and are essential in a chimpanzee model [29,30].

Similar results were subsequently shown in humans in a single-

source outbreak [31]. Interferon-c plays a key role in the clearance

of HBV from chimpanzees’ livers [30]. Studies with transgenic

mice expressing HBV have demonstrated the importance of type I

interferons (a, b) [32,33], type II interferons (IFN-c) [32], and type

III interferons (IFN-l) [34] as mechanisms for noncytolytic

control. Most of the antiviral effect of CD8+ CTLs was shown

to be mediated by IFN-c [35]. Consequently, we used a cellular

assay for IFN-c as the primary measure of immune function in this

study.

Heterologous immunization for a CTL response
In animal models a CTL response can be elicited with DNA

vaccination (reviewed in [36,37]). DNA vaccination of humans has

been reported for malarial antigens [38]. Mancini-Bourgine et al.

reported the induction or expansion of T cell responses in humans

after only DNA immunization with 0.5 mg of a DNA vaccine

encoding the preS2 and S subunits of the HBV envelope protein in

uninfected and in chronic HBV-infected people [39,40]. Heter-

ologous immunization, in which boosting for one antigen is done

sequentially using different vectors, has been shown to be more

effective than DNA immunization alone [41,42,43]. MVA’s

excellent safety profile and immunogenic properties make it a

promising human vaccine candidate [44]. A prime-boost strategy

using DNA followed by MVA has been used in several other

studies and shown to be highly immunogenic for the induction of

CD4+ and CD8+ T cells [45,46,47,48,49,50]. In a murine malaria

model, DNA immunization followed by recombinant MVA

boosting induced a protective CTL response, whereas the vaccines

in reverse order was not, nor was either of the vaccines by

themselves [49]. These initial studies in mice have been extended

to clinical trials. In a malaria vaccine study in The Gambia strong

CD4 and weak CD8 T cell responses were induced by two 1 mg

doses of a DNA vaccine given intramuscularly, followed by one

dose of 3.06107 pfu (plaque forming units) MVA vaccine given

intradermally at intervals 3 weeks apart [51]. Increasing the dose

of the DNA vaccine to 2 mg and the MVA vaccine to 1.56108 pfu

increased the effector T cell frequencies [52]. Dramatic loss of

HBV viraemia was seen in a chronically infected chimpanzee after

priming with a DNA immunization followed by boosting with a

recombinant canarypox booster [53]. Taken together, these

exciting results suggested that DNA priming with an HBV antigen

followed by boosting with recombinant MVA expressing the same

antigen could be a good choice for a therapeutic vaccine.

Which antigen to use, and why?
The HBV genome is small, consisting of only 4 overlapping

open reading frames. These encode 7 proteins: the large (L or pre-

S1 + PreS2 + S), middle (sometimes ‘‘medium’’) (M or pre-S2 + S),

and small (S) surface antigens, the core (c) and pre-core (e) antigens

(respectively known as HBcAg and HBeAg), the X antigen (so

named because its function was initially enigmatic), and the viral

polymerase. The antigenicities of these proteins differ; the core

antigen is a very potent antigen by both a T cell dependent and a

T cell independent mechanism [54] and is important for cellular

immunity. The HBV S antigen (HBsAg), which is associated with

viral adhesion, is also a very potent and reliable immunogen when

assessed by antibody production. Neutralizing anti-HBs antibodies

confer protection against future HBV infection, and all of the

highly efficacious HBV prophylactic vaccines to date use HBsAg

[11]. The excellent safety record with HBsAg was the primary

motivation in choosing the middle surface protein (281 aa) from

HBV genotype D as the antigen for vaccination in this study.

Methods

Objectives
The aim of this work was to determine if a heterologous

therapeutic vaccination regimen was safe and effective in HBeAg

negative and positive chronic HBV carriers. Change in viraemia

by PCR was the main efficacy endpoint and sero-reversion the

secondary one. The cellular immune response was measured by

IFN-c secretion in an ELISpot assay. Regarding safety, we already

had some supportive safety data from pilot studies in UK and The

Gambia on these vaccines (unpublished results).

The protocol for this trial and supporting CONSORT checklist

are available as supporting information; see Checklist S1, Protocol

S1, Protocol S2 and Protocol S3.

Participants
Potential study participants were identified from databases of

chronic hepatitis B carriers [9,55,56] from the Medical Research

Council (MRC) Laboratories, Fajara, or from a local health

centre. Males age 15 to 25 years who had HBV surface antigen

(HBsAg) present in blood for over 6 months were eligible. The

upper limit was chosen to avoid enrolling people who previously

had vaccinia vaccination. Most had been positive since early

childhood. Prospective volunteers had a baseline health screen.

Those with significant illness, relevant allergy or ALT level over 88

IU/L were excluded.

Before enrollment into the study, potential candidates and

members of their family were informed about the study in group

meetings led by field workers in their first language (Wollof,

Mandinka, or Fula). Each received an information sheet and

consent form to take home, ponder, and discuss with family elders.

Written informed consent was obtained for each person who

enrolled. Parental written informed consent was obtained for those

aged 15 to 18 years. Participants were not offered monetary

compensation but were given transportation costs, a hot lunch and

football video entertainment on study visit days, and free health

care at MRC clinic during and for up to 6 months after the study

ended.

Therapy for Chronic HBV
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The study documents and the recruitment and consent

processes were reviewed by the joint Gambian Government/

Medical Research Council Ethics Committee (http://www.saavi.

org.za/inventory.htm#14) and the Central Oxford Research

Ethics Committee (http://www.admin.ox.ac.uk/curec/). The

clinical trial was monitored by an external group.

Materials
Plasmid pSG2.HBs was generated by insertion of a gene

fragment containing the pre-S2 and S genotype D sequences of

HBV strain ayw (the most common serotype in The Gambia) into

the polylinker cloning region of vector pSG2. It contains the human

cytomegalovirus (hCMV) immediate early promoter with intron A

for driving expression of the HBsAg in mammalian cells, followed

by the bovine growth hormone transcription termination sequence.

The plasmid also contains a kanamycin resistance gene and is

capable of replication in Escherichia coli but not in mammalian cells.

MVA.HBs contains the gene fragment with the same pre-S2 and S

sequences driven by the vaccinia P7.5 early/late promoter inserted

into the thymidine kinase locus of MVA. It also contains the vaccinia

late promoter P11 driving expression of the lacZ marker gene.

MVA.HBs is produced in chicken embryo fibroblast cells. These were

produced under Good Manufacturing Practice (GMP) conditions

and donated by Oxxon Therapeutics (Oxford, UK). They were

shipped to The Gambia on solid CO2 and stored at -70uC.

Rabies vaccine (Rabies Vaccine BP, Wistar rabies strain PM/

WI 38 1503-3M, Human Diploid Cell Culture, Aventis Pasteur

MSD) was stored lyophilized at 8uC until reconstituted following

the manufacturer’s instructions.

Interventions

Figure 1 shows a time line for interventions. In the first phase

four groups (A, B, C, D) of 8 HBsAg-positive, HBeAg-negative

volunteers were recruited and allocated randomly. Those in

groups A and C received 1 mg of pSG2.HBs intramuscularly twice

at three weeks apart, which were then followed three weeks later

by two doses of 56107 plaque forming units (pfu) of MVA.HBs

(100 mL) intradermally, also three weeks apart. Those in groups B

and C received oral 3TC therapy (100 mg daily; ZeffixH,

GlaxoSmithKline, Greenford, Middlesex, United Kingdom) for

14 weeks, starting 28 days before vaccination. Those in the

negative control group D received 0.1 mL (2.5 IU) of rabies

vaccine intradermally on days 0, 7, and 28 (see Tables 1 and 2).

In the second phase, two groups (F, G) of 8 HBeAg-positive

volunteers each received 14 weeks of 3TC as described above.

Group G also received the pSG2.HBs and MVA.HBs vaccines as

described above. Consequently groups B and F were equivalent

(received 3TC only) except for eAg status, and likewise C and G.

When the favorable safety and disappointing efficacy results were

available from the groups described above, higher doses of vaccines

were used in phase three, in two further non-randomized study groups

(I, J). We planned to enroll 12 HBeAg-positive HBV carriers into

Group I to receive 11 weeks of 3TC therapy and beginning at day 28

to receive 2 mg pSG2.HBs intramuscularly on two occasions, followed

by one dose of 1.56108 pfu MVA.HBs (3 intradermal injections of

100 mL each), all 3 weeks apart. We planned to enroll 12 HBeAg-

negative HBV carriers into Group J to receive the same vaccination

regimen but without lamivudine. These changes in dose and regimen

were based on results from trials of similar malaria vaccines. Table 1

summarizes the treatment interventions for each group.

Volunteers were observed for one hour after vaccination and

were visited at home by trained field workers on the following

second, fourth and seventh days to assess vital signs, local adverse

events (discoloration, induration, blister formation, pain, limitation

of arm motion, scar and other reactions), systemic adverse events

(headache, nausea, malaise, axillary temperature) and to record

other unsolicited adverse events.

One week after each vaccination and at 4, 13, 25 and 37 weeks

after the last vaccination venous blood was collected for

measurement of full blood count, urea, creatinine and liver

enzymes (AST, ALT, c-GT). For the serology and viral load

assays, venous blood was collected 1 week after the second vaccine

and at 1, 4, 13, 25 and 37 weeks after the last vaccine. Deviations

from protocol times of up to 5 days were tolerated, but

uncommon.

Outcomes measures
HBV assays. Samples were tested for HBsAg by reverse

passive hemagglutination assay (WellcotestH, Murex Diagnostics,

Dartford, UK) and later by DetermineTM HBsAg (Abbott

Laboratories, Illinois, USA), an immunochromatographic assay.

Samples were tested for HBeAg using an enzyme immunoassay

(Equipar Diagnostici, Saronno(Va), Italy). The plasma HBV viral

load was measured initially by an outsourced laboratory (Covance)

using Roche Amplicor qPCR. Later we developed and validated

our own competitive real-time quantitative PCR as described

elsewhere [57]. The limits of detection and quantification were

about 40 and 260 copies mL21 respectively. Because DNA was

used as an immunogen, anti-DNA antibodies were measured by a

standard assay in the Clinical Immunology Department, The

Churchill, Oxford Radcliffe Hospital, Oxford.

Ex vivo ELISpot. Fresh ex vivo interferon-c ELISpot assays

were performed by adding 380,000 peripheral blood mononuclear

cells (PBMCs) from heparinized fresh whole blood to each well of a

quarter of a 96-well Millipore MultiScreenTM plate MAIPS4510

(Millipore, Billerica, Massachusetts, USA), along with the

appropriate stimulant for that well, to a final volume of 100 mL

and incubated overnight in a 37uC incubator with 5% CO2 in air.

The cells were stimulated either with RN10 medium alone (i.e.,

RPMI 1640 [Sigma-Aldrich R 8758, St. Louis MO], penicillin

and streptomycin [98 U mL21], L-glutamine [1.96 mM] and 10%

human heat-treated AB serum), with overlapping pools of peptides

spanning the HBV middle surface protein (15-mers overlapping by

5 amino acids), or with a positive control (FEC [a mixture of 22

known HLA Class I restricted peptides from influenza, CMV and

EBV], PHA, or PPD [tuberculin purified protein derivative]). The

sequences of the peptides matched that in the vaccines exactly and

are described in File S1. The ELISpot plates were coated with

capture antibody (1-D1K, Mabtech, Stockholm, Sweden)

overnight at 8uC and blocked with R10 (i.e., as RN10 but

substituting fetal bovine serum for human) for 1 hour prior to the

ELISpot assay. After overnight incubation, the ELISpot plates

were emptied and washed with PBS-Tween. The tracer antibody

(7-B6-1, Mabtech, Stockholm, Sweden) was added for 2 h to

overnight at 8uC. The developed plates were read on an

automated plate reader (Autoimmun Diagnostika GmbH,

Strassberg, Germany) and manually edited and double checked

to remove clearly artifactual marks from being counted as spots.

The count settings and similar details are further described in File

S1. These data were exported from the AID plate reader

electronically as Microsoft Excel files which were imported into

a Microsoft Access 2000 database for data management,

presentation and analysis as described elsewhere [58]. Queries

were designed to exclude data from unacceptable or suspicious

wells.

Flow cytometry analysis. Intracellular cytokine staining

(ICCS) was used to establish the phenotype of the IFN-c

Therapy for Chronic HBV
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producing cells from subjects in groups I and J. PBMCs, either

freshly isolated by LymphoprepTM (Axis-Shield, Oslo, Norway)

density centrifugation or from previously frozen samples, were

washed and then stimulated with the overlapping pools of HBsAg

peptides, or with medium alone, or with a positive control (either

FEC, PHA, or PPD) for at least 6 h, in accordance with BD

Biosciences’ recommendations for IFN-c staining [59]. Brefeldin A

(Sigma) was added at least 4 h before removal from the incubator

and staining. Cells were washed and then 0.5 mL of FACS

Permeabilizing Solution 2 (BD Biosciences) was added to each tube

for 15 min prior to dilution with 3 mL of PBS. The cells were then

stained with pre-mixed panels of antibody stains for 30-60 min.

They were washed and then stored in approximately 200 mL of 4%

formalin in PBS at 8uC until data acquisition on a BD FACSCalibur

4-color instrument (BD Biosciences). Cells passing through

lymphocyte gates (both small and large lymphocytes on an SSC

vs. FSC plot) were batch analyzed with FCS version 2.0 (De Novo

Software) to generate Excel files, which were then imported into a

Microsoft Access database for data management [58].

Sample size
For the initial studies, a total of 32 subjects (8 per group) was

considered a minimum number in order to meet the study

objectives of assessing preliminary safety of the vaccines and

determining its efficacy at reducing HBV DNA levels based on

data about stability of HBV viral load in eAg positive subjects.

Experience with antiviral agents and with vaccines in general

suggested that a relatively large effect size might be expected if the

treatment were successful. If heterologous prime-boost were to

behave in humans as it has been seen in rodents and non-human

primates, then 8 per group would be adequate to find this effect

[50]. After gaining experience with likely numbers of dropouts and

measurement variability, the sample size for groups I and J was

increased to 12 to make it likely that data from at least 10 subjects

would be available at the end of the study.

Randomization
Initially 32 HBsAg-positive, HBeAg–negative volunteers were

block randomized by the investigators using a table of random

numbers to one of 4 groups: A, B, C, D. The randomization was

performed after the decisions for enrollment had been made by the

participant and communicated to the study field workers and

physicians.

Figure 1. Time line illustrating group interventions. D = 1 mg pSG2.HBs. D = 2 mg pSG2.HBs. M = 56107 pfu MVA.HBs. M = 1.56108 pfu
MVA.HBs. r = rabies vaccination. eAg = HBV e antigen. shaded block indicates lamivudine therapy. Groups I and J had 3-week earlier follow-up assays.
doi:10.1371/journal.pone.0014626.g001

Table 1. Dosages for treatment groups.

Group Assigned n
HBs
Ag

HBe
Ag pSG2.HBs MVA.HBs Lamivudine

A 8 7 + - 1 mg (26) 56107 pfu (26)

B 8 8 + - 100 mg

C 8 9 + - 1 mg (26) 56107 pfu (26) 100 mg

D 8 7 + -

F 8 7 + + 100 mg

G 8 6 + + 1 mg (26) 56107 pfu (26) 100 mg

I 12 7 + + 2 mg (26) 1.56108 pfu 100 mg

J 12 11 + - 2 mg (26) 1.56108 pfu

N 26 indicates that the vaccine was administered twice.
N Vaccinations were separated by a 3-week interval.
N In the relevant groups, lamivudine was commenced 4 weeks before
administration of the first vaccination and it was used for 14 weeks except for
members of Group I, who used it for 11 weeks.
N n is the number of subjects in the efficacy analyses, not the number of
subjects initially assigned to that group (see Figure 2 and related discussion).
doi:10.1371/journal.pone.0014626.t001

Table 2. Time categories for analysis, in days.

Group Pre-treatment Treatment Post-treatment Follow-up

A #28 30–91 93–119 .119

B #0 3–98 119 .119

C #0 3–98 119 .119

D #0 7, 28 56 .56

F #0 3–98 119 .119

G #0 3–98 119 .119

I #0 3–77 98 .98

J #28 30–70 77–98 .98

doi:10.1371/journal.pone.0014626.t002

Therapy for Chronic HBV
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Blinding
Because the primary and secondary end points of the study were

laboratory measurements (qPCR and ELISpot) of blood samples

with minimal opportunity for conscious or subconscious subjective

bias, we felt that the benefit of blinding would be outweighed by its

logistic difficulties, so no attempt at blinding was made.

Statistical methods
Data management. Three relational databases were

developed in Microsoft Access 2000: one for immunological

(ELISpot and flow cytometry) data [58], one for clinical data, and

one for virological (qPCR) data. The clinical data were double

entered and discrepancies were identified using a tool developed at

Figure 2. Flowchart showing the number of participants at each stage in the study. D = pSG2.HBs; M = MVA.HBs; 3TC = lamivudine. * One
participant in each of these groups declined to participate early in the study. The details are in the Results section. # One HBeAg negative participant
was included in the VL analysis for DDMM; 3TC; - group who had been assigned in error to DDMM; 3TC; + group. ‘ One participant in each of these
groups was discovered to have been HBsAg and HBeAg negative all through the study and did not meet eligibility criteria, due to a manual
transcription error. @ Re-analysis of samples from four participants showed they had HBeAg negative chronic HBV from before the beginning of the
intervention and thus did not meet eligibility criteria for this group. $ Re-analysis of samples from one participant showed he had HBeAg positive
chronic HBV from the beginning of the intervention and thus did not meet eligibility criteria for this group.
doi:10.1371/journal.pone.0014626.g002

Therapy for Chronic HBV
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MRC for this purpose and corrected. Considerable care was given

to the accuracy of the data.

Model fitting. Exploratory analysis of our immunological

data used a mixed effects model. Initially we tried to fit the data for

all volunteers to a cubic model. The variability within groups was

high and there were no significant interactions. We then put the

data into meaningful time categories from which repeated

measures ANOVA with correlation between times was done.

For efficacy analyses we did paired t tests before treatment and

after treatment for each group using the time categories shown in

Table 2. Group comparisons for categorical data were performed

with Fisher’s exact test. All calculated p values were 2-tailed. All

results and participants were included in the safety analysis.

Efficacy analyses were based on treatments received. Exploratory

analyses (pairs plots) were done in R to see the overall correlation

between all the laboratory values.

Results

Recruitment
Two hundred forty six volunteers were screened for eligibility

between January 2002 and December 2003, of whom 153 were

HBsAg-negative and hence ineligible. Of the remaining 93

HBsAg-positive volunteers, 18 volunteers declined to participate

for personal reasons, probably related to the amount of visits and

phlebotomy, and 3 were excluded: 2 because of sickle cell disease,

and 1 lost HBsAg before the start of the study. Thus, 72 people

were eligible, enrolled in the trial and were allocated to one of the

8 groups. Of these, 69 completed their treatment. One volunteer

in group A dropped out after the first vaccination. One each in

groups D and I declined after 4 weeks participation. No reasons

were given for this. They were excluded from the efficacy analysis,

but their results relevant to the safety of the interventions are

presented. Figure 2 shows details of the treatment allocation and

the reasons for not progressing in the study. The baseline

characteristics of the participants in the different treatment arms

are shown in Table 3.

At the end of the study we found that two HBsAg –negative

participants had been enrolled in violation of the protocol. We

then re-tested baseline screening samples and found that 6

volunteers had incorrect HBeAg determination then. In one case

this was due to a borderline result, in two cases due to spontaneous

loss of HBeAg in the period between the screening assay and the

beginning of the study interventions, and in three cases to

communication errors. Because the interventions and monitoring

in group G were identical to those in group C, we reallocated the

participant from group G to group C for the efficacy analyses. This

made it possible for this person’s results to be analyzed with the

group that they should have been in, had the assignment been

made correctly at the outset. The results from the other 5

participants (4 in group I and 1 in group J) were not included in

the efficacy analysis but are included as safety data.

Lamivudine compliance
Adherence as assessed by pill count was quite good: 11/43 had

100% compliance; 26/43 had 95–99% compliance; 4/43 had 90–

94% compliance, and 2/43 had ,90% compliance.

Outcomes and estimation: safety
Clinical laboratory variables. Exploratory analyses of the

laboratory results are provided in File S2. Overall ALT levels

correlated more strongly with viraemia than did AST (Pearson

correlation coefficients of 0.361 and 0.326 respectively), and

overall ALT correlated strongly (as expected) with overall AST

(Pearson correlation 0.788); see Ancillary Analyses below. The

kinetics for the other biochemical data are shown in the File S3.

No particularly striking changes were seen in ALT, AST, c-GT, or

haemoglobin; these varied about as much in the treatment groups

as in the controls. The serum creatinine was elevated in groups A

and C participants around the time of the MVA injections, and in

group B around the time of the viral rebound. The variability was

comparable across all groups. No anti-DNA antibodies were

detected in any of the people who received pSG2.HBs. The

dataset may be found in Dataset S1.

Adverse events
Solicited systemic adverse events. In general the vaccines

were safe and well tolerated. There were few systemic adverse

events after the DNA and MVA vaccines at both doses as shown in

Table 4. Most of these adverse events were mild, that is, they did

not interfere with activities of daily living.

DNA vaccine (pSG2.HBs). A total of 47 doses of 1 mg

pSG2.HBs and 46 doses of 2 mg pSG2.HBs were given. Hardness

at the vaccination site (of 2 mm diameter which resolved in 2 days)

was noted in one participant and a temporary pigmented mark

was noted in one other. These were graded mild by the

investigators. After the administration of 1 mg pSG2.HBs 5

participants reported episodes of fatigue and body ache. The

timing of these suggested to the investigators that these were

unrelated to the vaccination. No systemic or local adverse events

were recorded after 46 administrations of 2 mg pSG2.HBs.

MVA.HBs. A total of 46 doses of 56107 pfu MVA.HBs and

23 doses of 1.56108 pfu MVA.HBs were given. The vaccines were

well tolerated at the different doses with mild and moderate

adverse events documented (Table 4). No changes outside of the

normal ranges were observed in the vital signs during 1 h post-

vaccination. An episode of mild diarrhoea and one of mild fever

were reported which resolved without treatment within 2 or 3 days

respectively. Painful lymphadenopathy was found in one person in

the first week after the first dose of 56107 pfu MVA.HBs

vaccination. A 1.5 cm right axillary lymph node was palpated

ipsilateral to the vaccination site in the skin over the deltoid muscle

though there were no other abnormal symptoms or signs and no

restriction of arm movements. By day 10 the swelling had resolved.

A characteristic local reaction was observed after administration

of MVA.HBs. After the intradermal injection, a small vesicle

developed at the site, signifying correct intradermal injection

technique. This disappeared within 30 minutes of vaccination.

Induration developed during the first 2 days after vaccination, in

Table 3. Baseline characteristics of volunteers: age, viraemia,
and liver inflammation (mean 6 SD).

Group n Age
log10

Viraemia
Range of log10

Viraemia AST ALT

A 7 20.564.2 2.961.9 5.9 2664.0 1967.0

B 8 16.362.2 3.362.0 6.6 23610 2367.3

C 9 17.663.5 2.962.2 6.4 2866.5 1963.8

D 7 18.862.9 2.362.2 5.5 3067.6 1768.2

F 7 17.663.4 9.260.6 2.1 39622 28623

G 6 16.262.6 8.760.5 1.3 41611 20610

I 7 17.762.5 8.860.9 2.0 72650 81661

J 11 20.662.4 4.260.6 2 2267.8 15610

doi:10.1371/journal.pone.0014626.t003
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most cases, non-tender. There was no limitation of arm

movement. Subsequently, redness, induration and scaling were

observed on the 2nd day post-vaccination which developed to

maximal size by the 4th to 7th day post-vaccination and gradually

disappeared, leaving a shiny plaque scar of 3 to 5 mm diameter by

the 28th day post-vaccination as shown in the photograph in

Figure 3. This developed by 4 weeks post-vaccination in

approximately 1/2 of the cases and by 5 weeks in approximately

3/4 of the cases, the remaining cases taking up to 14 weeks to

appear. The maximal diameter of the redness, induration and

scaling varied from 2 mm to 13 mm, 0.5 mm to 15 mm and

0.3 mm to 12 mm respectively. These were similar for both dose

regimens of MVA.HBs. However, a significantly higher propor-

tion of volunteers who received 1.56108 pfu of MVA (three

injections of 56107 pfu at once) had shiny plaque scars compared

with those who received two injections of 56107 pfu of MVA on

opposite shoulders three weeks apart (22/23 versus 4/23

individuals, p value = 7.361028). The shiny plaques persisted

beyond the end of the study: final observations ranged from day

245 to day 337. Giving three MVA.HBs injections to one

individual at a time may increase the probability that at any one

injection site a shiny plaque will develop (22/69 versus 4/46

injections, p value = 3.361023).

Unsolicited adverse events. Numerous unsolicited adverse

events in vaccines and in control volunteers were recorded as

shown in File S4. The most common unsolicited adverse events

were headaches (50), anaemia (37), likely related to malaria, and

malaria (33), which is endemic in The Gambia. Abdominal pain

(27), fever (25), and cough (20) were also common complaints.

Two adverse events happened that required hospitalization for

treatment: an episode of malaria in one patient in the low-dose

vaccine treatment group and an episode of moderate anaemia

with pyrexia in one patient in the higher dose vaccine treatment

group. Both episodes occurred 6–9 months after vaccination and

were unrelated to the therapy.

Outcomes and estimation: efficacy
HBV serology. None of the participants in any group lost

HBsAg during the study period. One of seven HBeAg-positive

participants in group I had lost HBeAg by day 63 of the protocol

by which time he had received lamivudine 100 mg daily for 9

weeks and two administrations of 2 mg pSG2.HBs intramuscularly

on days 28 and 49. During the study the HBV viral load for this

participant also declined from 7.8 to 5.3 log10 copies mL21. No

other HBeAg-positive participant changed their serological status

during the study.

Viral load. None of the vaccination regimens had a

noticeable sustained effect on the HBV viral load (Figure 4).

Individuals’ viral kinetics are shown in File S3. Table 5 lists p

values for before versus after comparisons within groups by

treatment interval. As expected, most participants who received

lamivudine had up to a 4 log10 decrease in HBV DNA viral copies

mL21 below their pretreatment levels. The HBeAg-negative and

HBeAg-positive people who received lamivudine therapy had

respective geometric means of 2.9 and 9.3 log10 copies mL21 at

baseline and 2.6 and 6.3 log10 copies mL21 at end of lamivudine

treatment. The decline in viraemia was most striking in the

HBeAg positive groups who had high initial viral load. By three

Table 4. Frequency of adverse events after each dose of MVA vaccine. Numbers in parentheses indicate the percentage of vaccine
recipients in that group that reported each adverse event.

Adverse events
First dose DNA§

n = 47
2nd dose DNA§

n = 46

MVA 1
(56107 pfu)
n = 23&

MVA 2 after MVA 1
(56107 pfu)
n = 23&

MVA
(1.56108 pfu)
n = 23#

Tenderness 0 0 8 (34.8%) 10 (43.4%) 7 (30.4%)

Redness 0 0 17 (73.9%) 11 (47.8%) 17 (73.9%)

Hardness 0 1 23 (100%) 23 (100%) 23 (100%)

Scaling 0 0 23 (100%) 17 (73.9%) 23 (100%)

Shiny plaque 0 1 0 4 (17.4%) 22 (95.7%)

Fever 0 0 1 (4.3%) 0 0

Diarrhea 0 0 0 2 (8.6%) 0

Fatigue 2 4 4 (17.4%) 3 (13.0%) 1 (4.3%)

Body ache 2 5 9 (39.1%) 4 (17.4%) 0

§There were no unsolicited adverse events after DNA vaccination in groups I or J.
&23 = 7+9+6+1 for groups A, C, G, and 1 of group exclude respectively (or alternatively, 7+8+8 for group A and the original allocations for groups C and G).
#23 = 7+11+4+1 for groups I, J, I-originally, and J-originally respectively.
doi:10.1371/journal.pone.0014626.t004

Figure 3. Typical shiny plaque seen at site of HBs.MVA
injection on right shoulder. The skin is over the right deltoid
muscle of a participant showing the vaccination site 129 days after
1.56108 pfu MVA.HBs administration by intradermal injection of 0.1 mL
at each of 3 sites. An arrow highlights the small shiny pigmented
macule seen at one of these sites.
doi:10.1371/journal.pone.0014626.g003
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weeks after discontinuation of lamivudine there was a rebound in

viral load back to the pretreatment values. The fluctuations that

exist are very likely indicative of the natural course of HBV

infection and the HBV DNA levels in the control arm (Group D)

shows as much variation as in any of the other groups, except

those taking lamivudine.

Outcomes and estimation: immunogenicity
IFN-c responses measured by ELISpot. There was no

strong evidence for vaccine-specific IFN-c responses in any of the

groups, although there was a small but discernable increase in

background response in group C at day 119, four weeks after the

last vaccination. Figure 5 shows the number of cells producing

IFN-c measured by ELISpot for the nonspecific (medium-only)

and HBsAg-peptide stimulated cultures. As the size and clarity of

spots can vary with cell type and assay conditions [60], figures in

File S5 describe the quantitative amounts of IFN-c produced.

Table 6 shows associated p values for comparisons of IFN-c
producing cells. Further statistical comparisons of the number of

spots and the amount of IFN-c produced and putative epitopes

and details about the ELISpot assay are described in File S6.

The background spots had moderate variability, except in group

A, which was quite high. Group D controls showed as much

variation as any other group.

Phenotyping of IFN-c producing cells. Intracellular cytokine

staining (ICCS) was used in groups I and J to identify the surface

phenotype of the cells making IFN-c. In these groups few IFN-c
producing cells were found using ICCS (consistent with the ELISpot

results). Neither CD4+ nor CD8+ T cells made significant IFN-c as

assayed by ICCS. The time course of T cells (CD3+), probable NK

cells (CD16+), and NKT cells (CD3+CD16+) that make IFN-c is

shown in File S3. Although few cells produced IFN-c, the picture that

emerges (more clearly in group J than I) is that the majority of IFN-c
production was made by antigen- nonspecific CD16+ cells, both

CD3+ and CD3–, consistent with the ELISpot results.

Ancillary analyses

Other results. All other analyses were exploratory. The HBV

viral load result shown in Figure 4 suggested that there might be a

difference in the responses during the treatment phase associated with

the vaccine, specifically that the viral load in the vaccinated group

who got lamivudine (group G) may have dropped less than in those

who received lamivudine alone (group F). This difference is

statistically significant before correction for multiple comparisons in

a regression model, p value = 0.014, but because 26 different such

comparisons could have been performed it is not statistically

significant after correction for multiple testing. However, the effect

is interesting and it is biologically plausible that the immune response

to vaccination could have increased viral replication. The study was

underpowered to detect an interaction like this (Figure 4 and File S3).

Analysis also included pairs plots for the laboratory data and the

corresponding correlation matrix. As one may expect, there are a

fairly strong correlations between hemoglobin, red blood cell count,

packed cell volume and mean corpuscular volume and between

IFN-c spot numbers and cytokine levels. See File S2 for details.

Following the negative efficacy and immunogenicity results, we

transported leftover clinical vials of pSG2.HBs and MVA.HBs

from Gambia back to UK and performed the murine stability and

potency assays on the contents, which showed that they had not

lost potency due to storage or transportation.

Discussion

Interpretation
Synopsis of key findings. We describe the safety, efficacy and

immunogenicity of a new therapeutic vaccination regimen: priming

with a DNA vaccine encoding the HBV surface protein and boosting

with a recombinant poxvirus encoding the same antigen, in HBeAg-

positive (generally high viraemia) and HBeAg-negative (generally low

viraemia) healthy volunteers with chronic HBV, in some cases with

concomitant lamivudine antiviral therapy. The vaccination regimens

were well-tolerated but failed to achieve a reduction in HBV

viraemia. Importantly, although there were a small number of

volunteers in each treatment group, there was sufficient power to

detect statistically significant effects during the treatment period, as

demonstrated in the groups receiving lamivudine and as shown in

Table 5. Also, as expected, this lamivudine-induced drop was greater

in people with HBeAg-positive than in those with HBeAg-negative

infection, as the latter began with markedly lower viral loads, and

because the quantitative PCR assay performs less accurately at or

near its limit of quantifiability.

There was high variability in net spots in fresh ex vivo IFN-c
ELISpot assays. The reasons why the background spots were so

high are unknown, but the frequent bouts of malaria and other

maladies which were reported as unsolicited adverse events may

Figure 4. Groups compared directly and by treatment interval. This figure shows the average value of log10 (viraemia) for each group with
error bars representing standard deviation. Sensible comparisons include longitudinal comparisons for each group as well as comparisons designed
to test specific components of the therapy. For example, if one considers only groups A and D, one could infer treatment effects due to the vaccine.
The comparisons for which one might infer therapeutic efficacy are shown in Table 7.
doi:10.1371/journal.pone.0014626.g004
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have caused temporary increases in nonspecific immune responses

in the volunteers. ICCS in groups I and J suggested that NK and

NKT cells produced IFN-c in a peptide-nonspecific fashion after

vaccination.

Possible mechanisms and explanations. The optimal dose

of an immunogen is very difficult to predict [61]. Initially doses of

1 mg pSG2.HBS and 56107 pfu MVA.HBs were chosen. Later

higher doses were used based on immunogenicity results of studies

of similar malaria vaccines. That participants in the lower-dose

vaccine group had 5 times more mild to moderate adverse events

than those in the higher-dose group may be due to seasonal effects.

Malaria was the most commonly observed unsolicited adverse event

and is highly seasonal in The Gambia. Malaria season corresponded

to the follow-up period for the lower-dose groups.

No effects were observed on transaminase levels, anti-HBe

seroconversion, or HBsAg seroreversion after 9–11 months of follow

up. One person lost HBeAg, but spontaneous loss of HBeAg occurs

not infrequently, as demonstrated by the 2 participants who lost

HBeAg in the interval between first screening and repeat baseline

testing. The mean annual rate of spontaneous seroconversion has

been estimated at 8% to 15% in individuals with active liver disease

and 2% to 5% in those with normal ALT [6]. In another recent

study we reported that 86% of HBV infected children in Gambia

recruited between the ages of 1–4 years, lost HBeAg by the age of 19

years, compared to 30% who lost HBsAg [62].

One possible reason for vaccination failure is antigenic diversity.

In Gambia there are two HBV genotypes: about 87% are genotype

E, the rest A [55]. pSG2.HBS and MVA.HBs contain a genotype D

sequence, which is 93% identical amino acids to genotype E [63]. It

is unlikely that this significantly affected T cell responses. This is not

a likely explanation for the failure of these vaccinations.

Another possible reason for the lack of efficacy is the profound

immune tolerance which most infected persons in The Gambia

have towards HBV. It is acquired in early childhood or at birth, in

contrast to people in Europe who mostly acquire it as adults. Thus,

the efficacy of immunotherapeutic agents may differ based on the

epidemiology of the disease, associated with circumstances of

acquisition and immune tolerance.

Comparison with other published studies. Other studies

have assessed HBV vaccine therapy for chronic HBV infection

[39,64,65,66,67]. The low efficacy found in this study contrasts

with findings from some other studies which show that vaccine

therapy in combination with antiviral drugs decreases HBV viral

replication and HBV DNA to undetectable levels by inducing

HBsAg-specific T-cells. Horiike et al. [66] describe intradermal

administration of HBsAg protein with 1 year lamivudine therapy

and found seroconversion from HBeAg to anti-HBe in 5 of 9

participants. However, that study was conducted in older people

who may have acquired infection in adulthood and have elevated

serum ALT levels, which may favor HBV control, in contrast to

the young healthy chronic HBV carriers used in the present study.

Dahmen et al. [65] show that 4 of 14 (28.6%) chronic HBV

carriers with unfavorable prognostic factors, such as pre-core HBV

mutants or previous interferon-a non-response, had viral clearance

and biochemical responses when given HBV surface protein with

alumimium hydroxide with lamivudine or interleukin-2

combination therapy. Yalcin et al. showed no significant effects

on HBV levels, HBeAg to anti-HBe seroconversion or on

transaminase levels following 3 intramuscular injections of a

recombinant DNA vaccine also coding for HBsAg [68]. The

variability seen between these studies may be due to variability in

the populations and the stage of infection, different vaccines,

frequency or route of administration and other factors.

There are favorable reports [39,40] of using HBsAg in a DNA

vaccine in chronically infected individuals. One difference

between the studies is the number of DNA immunizations: four

DNA immunizations with improvement seen after three immuni-

zations, compared to two followed by MVA vaccines. This does

not seem to be the sole explanation, however, in light of the

human malaria DNA, MVA studies in which we showed very high

levels of IFN-c producing T cells (which were mostly CD4+ cells)

[52]. The French group [39,40] reporting the positive phase I trial

result from DNA immunization alone used prolonged cultured

ELISpot (for 2 weeks), whereas in the current study all of the

ELISpots were ex vivo stimulated for less than 24 hours. The most

important difference between the current study and that of

Mancini-Bourgine [40] was that the current one included an

untreated control group.

Only weak correlation (e.g., 20.117) was seen between any of

the ELISpot immunogenicity measures and viraemia, in contrast

to the strong correlation reported by Webster et al. using MHC-I

tetramers instead of ELISpot [15]. Besides the assay differences

(phenotypic marker versus functional assay), another possible

reason for this discrepancy is that Webster et al. measured

Table 5. Paired 2-tailed t test p values within each group for viraemia data.

Group n Treatment vs Pre-treatment Post-treatment vs Pre-treatment Follow-up vs Pre-treatment

A 7 1.5361021 (1.00) 4.2261021 (1.00) 7.9761021 (1.00)

B 8 1.3461021 (1.00) 9.8061022 (1.00) 1.0461021 (1.00)

C 9 6.5861021 (1.00) 9.0161021 (1.00) 9.9761021 (1.00)

D 7 8.8761022 (1.00) 3.9661021 (1.00)

F 7 2.3261024 (0.005) 3.2461021 (1.00) 9.1761021 (1.00)

G 6 1.0161022 (0.232) 3.5261022 (0.810) 2.6261021 (1.00)

I 7 3.1361023 (0.072) 2.2861021 (1.00) 9.7861021 (1.00)

J 11 7.2461022 (1.00) 3.6461021 (1.00) 1.3761021 (1.00)

Since a vaccine is intended to provide immunological memory, the most important comparison is the follow-up vs. pre-treatment, although one could also make a case
for post-treatment vs. pre-treatment. Values compared were averages for each subject during the time interval, computed using the database software. Sufficient
power was present even in Group G, with only 6 members, to see a statistically significant effect during this interval. However, after Bonferroni correction for multiple
hypothesis testing, only in Group F is significance maintained at the traditional 0.05 level. Values in parentheses are after Bonferroni correction for multiple hypothesis
testing. In no case is there evidence for the efficacy of the vaccine regimen in lowering viraemia. (For the follow-up vs. pre-treatment comparison for Group J, n = 10
since one person was lost to follow-up.)
doi:10.1371/journal.pone.0014626.t005
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responses to core and polymerase proteins in addition to surface,

which was the only one in this current study. Neither study found

any association between markers of liver damage (AST, ALT) and

cellular immune function, although we did find a weak association

between markers of liver damage and viraemia. Thus, we

conclude that HBV infection in Gambia is a heterogeneous

condition which defies finding a relationship easily between

viraemia and immune responses.

Strong net responses with low background spots, as seen in several

cases in the ex vivo ELISpot results in this study, indicate an incomplete

tolerance, and show that the ability to react to HBsAg specifically is still

present in HBeAg negative HBV infected subjects. Suppressor T cells

(also called regulatory T cells or Tregs) may modify the responses and

have been shown to be important in mediating the immunosuppression

characteristic of chronic HBV infections [69]. Regulation in

immunology seems to have become synonymous with suppression,

but activation and suppression are both forms of regulation. We prefer

the original term (suppressor T cells) as more descriptive.

Recently results of some similar prime-boost vaccine trials have

been published which were also disappointing [70,71]. In contrast,

another study reports that in vitro and in HLA transgenic mice a

multiepitope heterologous prime-boost immunization with the

plasmid DNA and a recombinant MVA worked as a therapeutic

vaccine insofar as providing further enhancement of the immune

Figure 5. Background and net ELISpot results normalized to per million PBMCs. The net spots were calculated according to the following
formula:

net spots~ 1=2ð Þ
X14

i~1

peptide pooli{RN10
� �

where RN10 is the average of the spots from the two negative control wells. The summation is over all 14 wells in the plate layout which contained
overlapping pooled HBsAg peptides for each volunteer, and the factor of 1/2 normalizes for each peptide appearing twice in the matrix layout.
Because of the 14 summations the effect of a slightly low or slightly high background (measured over only 2 wells) gets amplified in the final net
spots count. The immune response would be expected to be strongest in the post-treatment time interval and to wane in the follow-up period, but
in fact variability was often high in the follow-up period. This may reflect non-specific immune activation due to other maladies such as malaria or to
the natural course of engaging a chronic HBV infection.
doi:10.1371/journal.pone.0014626.g005
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responses [72]. However, they did not report any antiviral efficacy.

Indeed, another vaccine trial that is similar to aspects of ours (in

particular, the Group F versus Group G comparison, although with

a different vaccine) also reported lack of efficacy of the therapeutic

vaccine to reduce viraemia despite induction of a vigorous HBsAg-

specific lymphoproliferative response [73]. Another earlier study

[74] also reported a lack of efficacy of HBsAg for clearing the virus;

the authors ascribed this to Th2 cytokines produced by HBsAg

whereas they found Th1 cytokines produced by HBcAg. Indeed, in

hindsight the short answer to our failure to generate an antiviral

response may well be that we used the wrong antigen.

Generalizability
Clinical implications. This study is longitudinal, dose-

ranging, with eAg+ and eAg– subjects across a wide range of

viraemia, with and without concomitant lamivudine therapy, in a

total of 8 arms. The consistent picture regarding efficacy that

emerges from quantitative virological and immunological data is

that pSG2.HBS and MVA.HBV are unable to break the profound

tolerance of the immune system to HBsAg in HBV chronic carriers.

It is likely that similar results would be seen in other populations

including women, who were not included in this study. Likewise,

expanding the age range considerably would probably not affect the

results, although HBV is usually acquired at a very young age in

The Gambia and the immune systems of very young children may

make these results inapplicable to that population. The safety results

of this study are also probably quite valid for a wider population,

since (i) the DNA plasmid had such paltry immunogenicity itself, (ii)

the HBV middle surface protein insert into MVA apparently did not

radically increase its immunogenicity, and (iii) MVA was widely

used in the final stages of the smallpox eradication campaign in

Germany and has been well tolerated in many other studies. It is,

however, noteworthy that the shiny plaques seen at the higher

MVA.HBs dose were ‘‘completely missing’’ after MVA itself

administered predominantly to participants with lightly or non-

pigmented skin in Europe [44].

Research implications. Did our particular prime-boost

vaccines fail because of the particular antigen chosen, the dosage

(typically much higher in animals), or for some other reason? The

most likely reason, we think, is that chronically infected people are

profoundly immunotolerant towards the middle surface protein (M

protein), which has been present in very high levels in blood and

extracellular fluid since early childhood. In contrast, when given as a

vaccine to non-infected people, it is very immunogenic and 2 doses of

it in alum predictably lead to high levels of antibody. The HBV core

protein may have been a better choice as it is strongly immunogenic

by both T cell dependent and T cell independent mechanisms [54].

As pointed out by a reviewer, better responses might have been

achieved by adding in ubiquitous T cell epitopes or possibly even

slightly varying the HBsAg sequence (e.g., by 5–7% mismatches) to

help break the tolerance. In the case of the 3TC-treated volunteers, a

longer pre-treatment interval (8–12 weeks) might have allowed

greater T cell recovery and possibly better results.

How can one break the immune tolerance induced by HBV?

Because a decrease in viraemia (as for example during antiviral

therapy) leads to increased T cell responsiveness, and that this is

reversible, indicates that tolerance is actively maintained either

directly or indirectly by the virus. There may be a role of

suppressor T cells [75,76]. There is evidence in mice that had been

primed by DNA immunization that depleting suppressor T cells

can enhance the CD8+ T cell response against HBV [77].

Overall evidence
Limitations of the present study. The interpretations of

the present study need to be limited by the fact that small or

moderate sized effects cannot be excluded by this study design.

The flow cytometry results in groups I and J indicated that most of

the INF-c producing cells were probably NK or NKT

lymphocytes. One caveat to this is that there were very few

gated cells making IFN-c, and statistics with few events are less

credible than with many events. However, these results are

consistent with the few spots detected in ELISpot. This problem

was exacerbated by the limited amount of blood taken, the

Table 6. Paired 2-tailed t test p values within each group for ELISpot data (normalized net spots).

Group n Treatment vs Pre-treatment Post-treatment vs Pre-treatment Follow-up vs Pre-treatment

A 7 7.3361021 (1.00) 2.4361021 (1.00) 9.4261022 (1.00)

B 8 1.7461021 (1.00) 6.8961022 (1.00) 8.5461021 (1.00)

C 9 3.5961021 (1.00) 5.4361021 (1.00) 4.7761021 (1.00)

D 7 5.4661021 (1.00) 7.5461021 (1.00)

F 7 3.5761021 (1.00) 7.9761021 (1.00) 2.7361021 (1.00)

G 6 9.0961022 (1.00) 5.9861021 (1.00) 9.5361021 (1.00)

I 7 7.6961021 (1.00) 7.8861021 (1.00) 3.7561021 (1.00)

J 11 7.3661021 (1.00) 1.4561021 (1.00) 3.0161021 (1.00)

Blood for ELISpot was not taken during the treatment period for groups B, F, and G. Values in parentheses are after Bonferroni correction for multiple hypothesis testing.
doi:10.1371/journal.pone.0014626.t006

Table 7. Appropriate comparisons (companion table to
Figure 4)

Comparison eAg status Experimental variable isolated

Group A vs Group C negative lamivudine

Group A vs Group D ‘‘ vaccine

Group B vs Group C ‘‘ vaccine

Group B vs Group D ‘‘ lamivudine and rabies vaccine

Group C vs Group D ‘‘ lamivudine, vaccine combination

Group A vs Group J ‘‘ dose of vaccine

Group G vs Group F positive vaccine

Group F vs Group I ‘‘ vaccine

Group G vs Group I ‘‘ dose of vaccine

doi:10.1371/journal.pone.0014626.t007
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variable recovery of PBMCs, and the fact that ELISpot had

priority over ICCS for use of PBMCs. Furthermore, NK cells are

not uniquely defined by CD16, and the CD16loCD56hi subset of

NK cells has been identified as the subset that makes the most

IFN-c [78]. For these reasons we do not claim that the majority of

the IFN-c producing cells were definitely NK or NKT cells, only

that the preponderance of evidence – including the ELISpot data

and the fact that IFN-c was also made with or without antigen

(peptide) stimulation – indicates that this is likely.

Finally, this study was not blinded, but that does not seem to

have been a problem given the laboratory nature of the data. We

had no bias towards negative results; all the investigators were

optimistic that the study would have demonstrated efficacy.
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