20-12-2009

Stimulation of osteoblasts using rest periods during bioreactor culture on collagen-glycosaminoglycan scaffolds.

Sonia Partap
Royal College of Surgeons in Ireland

Niamh A. Plunkett
Royal College of Surgeons in Ireland

Daniel J. Kelly
Trinity College Dublin

Fergal J. O'Brien
Royal College of Surgeons in Ireland, fjobrien@rcsi.ie

Citation
Stimulation of Osteoblasts Using Rest Periods during Bioreactor Culture on Collagen-Glycosaminoglycan Scaffolds

Sonia Partap 1,2, Niamh A. Plunkett 1,2, Daniel J. Kelly 2, and Fergal J. O’Brien 1,2

1 Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland
2 Trinity Centre for Bioengineering, Department of Mechanical Engineering, Trinity College, Dublin, Dublin 2, Ireland

Dr. Sonia Partap
Department of Anatomy, Royal College of Surgeons in Ireland
123 St. Stephen’s Green
Dublin 2, Ireland
Phone: +353-(0)1-402-2147
Fax: +353-(0)1-402-2355
Email: soniapartap@rcsi.ie

Niamh A. Plunkett
Department of Anatomy, Royal College of Surgeons in Ireland
123 St. Stephen’s Green
Dublin 2, Ireland
Phone: +353-(0)1-402-2147
Fax: +353-(0)1-402-2355
Email: niamh.plunkett@gmail.com

Dr. Daniel J. Kelly
Trinity Centre for Bioengineering, School of Engineering, Trinity College
Dublin 2, Ireland.
Phone: +353-(0)-1-896-3947;
Fax: +353-(0)-1-679-5554.
E-mail: kellyd9@tcd.ie

Address Correspondence and Reprints Requests to:
Prof. Fergal J. O’Brien
Department of Anatomy, Royal College of Surgeons in Ireland
123 St. Stephen’s Green
Dublin 2, Ireland
Phone: +353-(0)1-402-2149
Fax: +353-(0)1-402-2355
Email: fjobrien@rcsi.ie
Abstract

Osteoblasts respond to mechanical signals which play a key role in the formation of bone however, after extended periods of stimulation they become desensitised. Mechanosensitivity has been shown to be restored by the introduction of resting periods between loadings. The aim of this study was to analyse the effect of rest periods on the response of osteoblasts seeded on collagen-glycosaminoglycan (CG) scaffolds in a flow perfusion bioreactor up to 14 days. Short (10 seconds) and long (7 hours) term rests were incorporated into stimulation patterns. Constructs cultured in the bioreactor had a more homogenous cell distribution albeit with lower cell numbers than the static group. Osteopontin expression was significantly higher on the rest inserted group than on the steady flow and static control. These results indicate that the insertion of short term rests during flow improves cellular distribution and osteogenic responses on CG constructs cultured in a flow perfusion bioreactor.
1. Introduction

Bioreactors are used to influence biological processes by the application of a mechanical stimulus [1], as well as overcoming problems associated with static culture where cells tend to concentrate on the construct periphery leading to encapsulation and peripheral extracellular matrix formation causing poor nutrient and waste exchange and limited cell viability in the centre resulting in core degradation [2, 3]. Flow perfusion bioreactors, in particular can be used to mechanically stimulate osteoblasts to accelerate the formation of increased bone matrix in scaffolds [4], and induce fluid flow throughout scaffolds allowing nutrient and waste exchange to occur to increase cell viability to deliver a more homogeneous construct [5, 6].

It is has been shown that osteoblasts respond to mechanical signals which plays a key role in the formation of bone [7, 8]; mechanical stimulation leads to an increase in proliferation and matrix synthesis [9, 10]. *In vitro* experiments in 2-D have shown fluid flow to have a number of effects on bone cells; the initiation of fluid flow induces a rapid and transient increase in cytosolic calcium, expression and regulation of numerous genes including COX-2, as well as the production and release of prostaglandin E$_2$ (PGE$_2$) into the culture medium [11]. Fluid flow has also been shown to stimulate expression of osteopontin (OPN) as well as increasing alkaline phosphatase (ALP) levels [2] ultimately enhancing mineralisation due to bioreactor culture [12].

However, it is reported that extended periods of continuous flow may hinder the development of an osteoblastic extracellular matrix because of (1) cell detachment [5], and (2) the loss of mechanosensitivity [13]. Firstly, fluid flow reorganizes the actin cytoskeleton that may affect cell retention and cell viability, as well as blocking critical signaling pathways by depleting the cell microenvironment of secreted signaling factors (*e.g.* PGE$_2$ and ATP)[14]. Secondly, bone adapts to mechanical loading; *in vivo* studies have shown that bone can recover its responsiveness and is able to respond to mechanical stimuli with the same magnitude as earlier exposures to loading with the insertion of appropriate length rest periods [13]. Therefore, the aim of this study was to investigate the effect of rest periods during flow on osteoblast behaviour on collagen-glycosaminoglycan
CG scaffolds up to 14 days using a flow perfusion bioreactor developed previously in our laboratory [15, 16].

2. Materials and Methods

2.1 Scaffold Fabrication
Collagen-GAG scaffolds were synthesized as described previously [17]. Briefly, type I collagen from bovine tendon (Integra Life Sciences, Plainsboro, NJ) and chondroitin-6-sulfate from shark cartilage (Sigma-Aldrich, Dublin, Ireland) were dispersed in an aqueous acetic acid solution (0.05M). The slurry was lyophilised for 24 hours using a final freezing temperature of -40°C. The scaffolds were sterilized using a dehydrothermal treatment for 24 hrs at 105°C. Discs (12.7 mm diameter x 3.5 mm thickness) were then crosslinked with an aqueous solution of 14 mM N-(3-Dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDAC) and 5.5 mM N-Hydroxysuccinimide (NHS) for 2 hrs [18].

2.2 Construct Pre-culture
Scaffolds were seeded with 2 million MC3T3-E1 pre-osteoblast cells. The scaffolds were pre-cultured in static conditions (37°C and 5% CO₂) for 6 days after which point the constructs were cultured in the flow perfusion bioreactor or static culture conditions for 1 hour, 49 hours, 4, 7 or 14 days. For experiments carried out up to 49 hours constructs (n=8) were cultured in α-MEM supplemented with 2% penicillin/streptomycin, 1% L-glutamine, 10% foetal bovine serum and 0.1% amphotericin (Sigma-Aldrich Ireland, Dublin). For constructs cultured up to 14 days (n=6) the media was replaced with osteogenic media on the third day of the pre-culture period which was supplemented with 50 µg/mL ascorbic acid and 10mM β-glycerolphosphate and was used thereafter until the end of the experiment.

2.3 Bioreactor Culture
Constructs were stimulated with flow patterns incorporating short and long term rest periods. Short term periods of no flow were incorporated into 1 hour bouts of stimulation. They were of duration: 0 (steady flow group) and 10 seconds (rest inserted group) and were inserted between bouts of 10 seconds of 1 mL/min flow. This hour of stimulation was followed by a 7 hour long term rest period. This 8
hour cycle was repeated for the duration of the culture period. Media in the reservoir was replaced with fresh osteogenic media every 2-3 days. Two different control groups were used; (1) a static control group, and (2) a bioreactor control in which constructs were placed into the bioreactor and immediately removed. This group was used to examine the effect of the process of setting up the bioreactor on cellular activity. After the culture period constructs were either flash frozen or fixed in formalin.

2.4 Analysis

2.4.1 DNA Quantification
Cell number was determined by the quantification of the double stranded DNA from lysate obtained using the RNeasy mini kit (Qiagen)[15], 10 µL of the lysate was mixed with 200 µL of Hoechst 33258 dye (Sigma-Aldrich) and fluorescence was measured (excitation: 355 nm, emission: 460 nm; Wallac Victor™, PerkinElmer, Waltham, MA) on samples in triplicate in a 96-well plate. Readings were converted into cell number using a standard curve.

2.4.2 Gene Expression
RNA was extracted using a RNeasy mini kit (Qiagen, USA) according to manufacturer instructions. The quality and concentration of the RNA was quantified by measuring absorbance at 260 nm (GeneQuant Pro RNA/DNA calculator, Biochrom Ltd., UK). Reverse transcription was performed on 400 ng of total RNA using the QuantiTect RT Kit (Qiagen) according to the manufacturer’s instructions. RT-PCR was subsequently performed using a 7500 Real-Time PCR System (Applied Biosystems, Foster City, CA) using the QuantiTect SYBR Green PCR Kit (Qiagen) according to the manufacturer’s instructions with QuantiTect Primers (designed by Qiagen). Results were quantified for COL-1 α1, ALP and OPN via the relative quantification (ΔΔCt) method using 18-S rRNA as the endogenous reference. For each gene, results are expressed relative to the bioreactor control group. All PCR reactions were conducted in triplicate for each sample.

2.4.3 Histological Analysis
Constructs were embedded in paraffin wax using an automatic tissue processor (ASP300, Leica, Wetzlar, Germany) and sectioned on a microtome (RM2255,
Leica). 10 \(\mu \)m sections were processed and stained with Haematoxylin and Eosin (H&E) and digital images were captured on a microscope (Optimphot2, Nikon, Japan).

2.5 Statistical Analysis

Results are expressed as mean ± standard deviations (SD). Statistics were done in SigmaStat 3.0 (SPSS, Chicago, IL) using a general linear model ANOVA with the Holm-Sidak post-hoc multiple comparison test. Statistical significance was taken at \(p<0.05 \).

3. Results

Significantly higher cell numbers were observed on statically cultured constructs compared to the flow groups at all time points (\(p \leq 0.025 \)). For static culture, all scaffolds retained more than 2 \(\times 10^{6} \) cells, whereas constructs cultured in the bioreactor maintained \(\text{ca.} \ 0.5 - 1 \times 10^{6} \) cells. There was no significant difference in cell number between the flow groups (Fig. 1).

Histological analysis revealed a difference in the cellular distribution of constructs that were cultured under static conditions compared to the bioreactor. H&E staining showed that there were more cells on the periphery of static constructs with few or no cells in the centre (encapsulation effect), compared to constructs exposed to flow where the cells appeared to have been detached from the edges and surfaces (Fig. 2a). However, more cells had infiltrated further into the centre of constructs exposed to flow despite the loss of cells from the periphery. At day 14 the encapsulation effect was more pronounced for the static constructs (Fig. 2b).

The increase or decrease in gene expression was calculated as a fold change compared to the bioreactor control group (which was scaled to 1). COL-1 and ALP expression decreased from 1 hour to day 14 for all groups (\(p \leq 0.07 \), Fig. 3a, b). However, the static control showed significantly higher expression of COL-1 than the flow groups (\(p \leq 0.025 \), Fig. 3a). Osteopontin (OPN) expression (Fig. 3c) peaked at day 14 for the static group (1 hour vs. 14 days, \(p \leq 0.005 \)); peaked at day 4 for the steady group, whereas the rest inserted group showed a steady
continuous increase up to day 14 (1 hour vs. 14 days, \(p \leq 0.005 \)). Overall, OPN levels were higher on the rest inserted group than the steady group and static control (\(p \leq 0.025 \)).

4. Discussion

The aim of this study was to investigate the response of osteoblasts to short term rest periods with regards to cell distribution, cell number and expression of a number of osteogenic genes on collagen-GAG constructs cultured up to 14 days in a flow perfusion bioreactor. The results show that bioreactor culture improved cell distribution compared to statically cultured constructs and enhanced expression of osteogenic markers with the rest inserted group showing the most encouraging results with regards to osteopontin (OPN) expression.

In vivo studies have shown that mechanical loading of bone is a potent stimulus for new bone formation [13]. However, even though osteoblasts are stimulated by mechanical loading they also adapt to their mechanical environment. It has been shown that shorter more frequent loading sessions separated by adequate rest periods provide a greater osteogenic response than continuous loading [13, 19]. Therefore, we hypothesised that both short (10 seconds) and long (7 hours) term recovery periods during which mechanical loading were halted would restore bones sensitivity to mechanical stimuli, prevent cell detachment and not deplete the cell microenvironment of the necessary regulatory molecules to preserve the signalling pathways, whilst flow would stimulate the cells and provide nutrient and waste exchange to occur.

Higher cell numbers were observed on statically cultured constructs compared to those constructs cultured in the bioreactor. This trend has also been observed by other groups [20, 21]. Despite the reduction in cell numbers seen for flow groups, cellular distribution was more homogeneous as has been seen in numerous other studies [5, 12, 15], and more cells had infiltrated further into the centre of constructs. In the statically cultured constructs cellular encapsulation of the scaffold was observed where the cells were concentrated along the periphery of the construct, a phenomenon that was lessened in bioreactor culture. This may be
indicative of cells preferentially being sheared off the surfaces and edges of the constructs under flow conditions. However, it is worth noting that despite the significant decrease in cell number due to flow, there are still up to ca. 1 million cells on the constructs after the 14 day culture period. By removing cells concentrated on the periphery and increasing cell viability in the centre of the scaffold, it is envisaged that a more homogeneous scaffold may develop preventing core degradation occurring in vitro. Therefore, the decrease in cell number seen under bioreactor culture may potentially be of benefit to tissue development.

Significant changes in the expression of genes associated with bone formation were observed in response to the different stimulation patterns used. Collagen I (COL-1) expression decreased for all groups by day 14 compared to 1 hour. By day 14, both flow groups (steady and rest inserted) showed a significant decrease in COL-1 expression compared to the static group. COL-1 is expressed during proliferation in 2-D culture, is then gradually downregulated but is expressed at low levels throughout osteoblast differentiation and maturation [22]. The results suggest that culture in the bioreactor may either be downregulating this gene or accelerating osteoblast maturation. A similar trend for Alkaline Phosphatase (ALP) expression was observed as it also decreased by day 14 for all groups. ALP expression peaked at 49 hours for the static group and 1 hour for the flow groups. Including the 6 day pre-culture period, constructs were actually in culture for a period of 8 and 6 days for static and bioreactor culture respectively. ALP expression generally increases after the proliferation phase [22]. Proliferation may have been halted due to bioreactor culture and the reduced levels of ALP expression may be indicative of the end of the proliferative phase. Expression of osteopontin (OPN) increased from 1 hour to day 14 for all groups, however, the rest inserted group showed significant increases in expression compared to both the static and steady flow groups. This trend has also been observed in 2-D when rest inserted flow was used [23]. OPN is a late stage marker in the mechanotransduction cascade, it regulates bone cell attachment and mineralisation [11] and is important in bone remodelling [24]. Taken together, increased OPN expression coupled with decreased COL-1 expression may indicate that bioreactor
culture has enhanced expression of post proliferative genes at the expense of those found during proliferation.

In summary, a flow perfusion bioreactor (1) mechanically stimulated osteoblasts and (2) improved cell distribution throughout the construct. COL-1 expression decreased and OPN expression increased due to bioreactor culture, whilst ALP was downregulated on all groups. OPN was upregulated significantly on the rest inserted group compared to the static control or steady flow group. These results indicate that the insertion of rest periods during flow improves cell distribution and osteogenic responses on CG constructs cultured in a flow perfusion bioreactor.
Acknowledgements

Funding for this study was provided by Science Foundation Ireland (President of Ireland Young Researcher Award, 04/Y11/B531), Research Frontiers Programme, (07/RFP/ENMF142) and the Irish Research Council for Science, Engineering and Technology (RS/2005/173). Collagen materials were provided by Integra Life Sciences, Inc, through a Materials Transfer Agreement.

Author Disclosure Statement

No competing financial interests exist.
References

List of Figures

Fig. 1 Cell number on all groups, * represents \(p \leq 0.025 \). A decrease in cell number was observed on constructs cultured in the bioreactor

Fig. 2 Transverse Haematoxylin & Eosin images of constructs after 14 days of (a) bioreactor culture (rest-inserted flow) and (b) static culture. The scale bar is 500 µm in length. Note the formation of an external capsule on the static group which is not observed in the rest-inserted flow group as highlighted by the arrows.

Fig. 3 Gene expression of COL-1. * represents \(p \leq 0.017 \). Bioreactor groups showed significant decreases in COL-1 expression compared to the static group. (b) Gene expression of ALP. ALP expression decreased from 1 hour to day 14 for all groups whilst there are no differences in its expression due to culture conditions. (c) Gene expression of OPN. * represents \(p \leq 0.017 \) and ** represents \(p \leq 0.025 \). A significant increase in OPN expression was observed for the rest inserted group in comparison to the static and steady groups. All groups are scaled to the bioreactor control group
Figures

Fig.1 Cell number on all groups, * represents $p \leq 0.025$. A decrease in cell number was observed on constructs cultured in the bioreactor.
Fig. 2 Transverse Haematoxylin & Eosin images of constructs after 14 days of (a) bioreactor culture (rest-inserted flow) and (b) static culture. The scale bar is 500 µm in length. Note the formation of an external capsule on the static group which is not observed in the rest-inserted flow group as highlighted by the arrows.
Fig. 3 Gene expression of COL-1. * represents $p \leq 0.017$. Bioreactor groups showed significant decreases in COL-1 expression compared to the static group.

(b) Gene expression of ALP. ALP expression decreased from 1 hour to day 14 for all groups whilst there are no differences in its expression due to culture conditions.

(c) Gene expression of OPN. * represents $p \leq 0.017$ and ** represents $p \leq 0.025$. A significant increase in OPN expression was observed for the rest inserted group in comparison to the static and steady groups. All groups are scaled to the bioreactor control group.