Prevalence of psychotic symptoms in childhood and adolescence: a systematic review and meta-analysis of population-based studies.

Ian Kelleher
Royal College of Surgeons in Ireland, iankelleher@rcsi.ie

Dearbhla Connor
Royal College of Surgeons in Ireland

Mary C. Clarke
Royal College of Surgeons in Ireland

Nina Devlin
Royal College of Surgeons in Ireland

Michelle Harley
Royal College of Surgeons in Ireland

See next page for additional authors

Citation
Prevalence of psychotic symptoms in childhood and adolescence: a systematic review and meta-analysis of population-based studies

Ian Kelleher*, Dearbhla Connor, Mary C. Clarke, Nina Devlin, Michelle Harley, Mary Cannon*

Abstract

BACKGROUND: Psychotic symptoms occur more frequently in the general population than psychotic disorder and index risk for psychopathology. Multiple studies have reported on the prevalence of these symptoms using self-report questionnaires or clinical interviews but there is a lack of consensus about the prevalence of psychotic symptoms among children and adolescents.

METHOD: We conducted a systematic review of all published literature on psychotic symptom prevalence in two age groups, children (aged 9 to 12) and adolescents (aged 13 to 18), searching through electronic databases PUBMED, OVID MEDLINE, PsychINFO and EMBASE up to June 2011, and extracted prevalence rates.

RESULTS: We identified 19 population studies that reported on psychotic symptom prevalence among children and adolescents. The median prevalence of psychotic symptoms among children aged 9 to 12 was 17% and among adolescents aged 13 to 18 was 7.5%.

CONCLUSIONS: Psychotic symptoms are relatively common in young people, especially in childhood. Prevalence is higher in younger (9 to 12 years) compared to older (13 to 18 years) children.

INTRODUCTION

The prevalence of psychotic symptoms in the general population greatly exceeds the prevalence of psychotic disorders. In the absence of illness, these symptoms are also sometimes referred to as psychotic experiences or psychotic-like experiences (PLEs) (Kelleher et al., 2010). A continuum between psychotic symptoms in childhood and psychotic disorder in adulthood was first demonstrated by Poulton et al. (2000) who showed that adolescents in a longitudinal birth cohort study who reported psychotic symptoms at age 11 were at a 5- to 16-fold increased risk for psychotic disorder at age 26. Welham et al. (2009) subsequently also demonstrated that self-reported auditory hallucinations at age 14 predicted increased rates of psychosis in adulthood. Individuals who report psychotic symptoms have also been demonstrated to share a wide range of risk factors with psychosis patients, including shared obstetric, developmental, substance use, social and environmental risk factors (for review, see Kelleher and Cannon, 2011). For these reasons, some researchers have argued that
individuals who report psychotic symptoms represent a valid population in which to study the aetiology of psychosis (Linscott and van Os, 2010, Polanczyk et al., 2010). More recently, evidence has been emerging that the clinical significance of psychotic symptoms extends beyond psychosis, with a number of research groups finding that young people who endorse questionnaire items on psychotic symptoms are also more likely to endorse symptoms of non-psychotic psychopathology, especially symptoms of depression (Hanssen et al., 2003, Johns et al., 2004, Kelleher et al., In Press, Nishida et al., 2008, Polanczyk et al., 2010, Scott et al., 2009b, Varghese et al., 2011, Wigman et al., 2011, Yung et al., 2009).

A review of the general population prevalence of psychotic symptoms by van Os and colleagues up to 2007 reported a median prevalence of 5% (van Os et al., 2009). However, this meta-analysis was based mainly on adult studies. There has been no systematic review to date on the prevalence of psychotic symptoms specifically in childhood or adolescence. To address this issue, we carried out a systematic review and meta-analysis of studies reporting prevalence rates for psychotic symptoms in the general population among children and adolescents up to age 18.

METHOD

Search Strategy

We conducted a systematic review of all published literature on the prevalence of psychotic symptoms in children and adolescents. The methodology of this systematic review and meta-analysis followed the guidelines for conducting systematic reviews set out by AMSTAR (Shea et al., 2007). We searched through electronic databases PUBMED, OVID MEDLINE, PsychINFO and EMBASE from their inception to June 2011 with the following search terms: young people, adolescents, teenagers, child / children, psychotic symptoms, psychosis, paranoia, delusions, hallucinations, grandiosity, unusual beliefs/ideations, positive and negative symptoms, prevalence and psychotic-like experiences. We searched using the format [(Young people OR adolescents OR teenagers OR child) AND (prevalence) AND (psychotic symptoms OR psychosis OR paranoia OR delusions OR hallucinations OR grandiosity OR unusual beliefs/ideations OR positive symptoms OR negative symptoms OR psychotic-like experiences)]. We also searched references within papers to identify other possible studies.

Inclusion Criteria

Methods used to assess the prevalence of psychotic symptoms in studies to date include interviews and questionnaire surveys. The latter approach has involved a number of different questionnaires that have had a great deal of variance in terms of the number of questions asked (from 1 to 92 items). Furthermore, endorsement rates of more than 90% for ‘at least one psychotic symptom’ have been reported in questionnaire studies (Wigman et al., 2011), raising concerns about the validity of these items.
Questionnaires have largely been unvalidated against clinical interview in terms of sensitivity and specificity and the inclusion of questionnaire studies risks overestimating the true prevalence of psychotic symptoms in the population. We recently showed, however, that some items on self-report questionnaire perform well in terms of identifying individuals with genuine psychotic symptoms when compared with gold standard clinical interview, while others perform poorly (Kelleher et al., 2011a). In particular, we found that a question on auditory hallucinations – “Have you ever heard voices or sounds that no one else can hear?” – demonstrated very good sensitivity, specificity and positive and negative predictive value not just for auditory hallucinations but for psychotic symptoms in general. Laurens et al. (2011) have also recently demonstrated, using item response theory analysis in a large population sample of children, that a self-report question on auditory hallucinations demonstrates the strongest psychometric properties for assessing the continuum of psychotic symptoms compared to other questions. For this reason, in addition to including psychotic symptom prevalence rates from interview studies, we included reports that used the same question as in our initial validation report (Kelleher et al., 2011a), or a question with a similar wording, in order to calculate a meta-analytic median prevalence of psychotic symptoms in studies of children and adolescents.

We excluded papers for the following reasons (a) did not report prevalence rates or data from which rates could be calculated, (b) did not report rates for individuals under 18 years or allow calculation of rates for this age group, (c) reported psychotic symptoms that were sleep related, substance use related or organic in origin only or (d) reported on clinical samples – that is inpatient/outpatient or help-seeking groups.

Study selection and data extraction

IK, DC, ND and MH independently conducted the searches and examined all titles and abstracts and assessed the relevance and appropriateness of the studies for the question under review. Full texts of potentially relevant papers were obtained. Where necessary, authors were contacted for further information. From each paper collected, IK and MCC extracted data on the age range of participants and the reported rates of psychotic symptoms. Where samples overlapped (e.g., publications on preliminary data), papers that reported on the largest overall sample size were used.

Data Analysis

Eligible studies were divided into two groups according to whether participants were aged 9 to 12 years (the child population) or aged 13 to 18 years (the adolescent population). Where studies cut across these age ranges, the mean age of participants was used to assign the study to the ‘childhood’ or the ‘adolescence’ group. We adopted the approach advocated by Saha et al., (2008)
and also used in the previous psychotic symptom meta-analysis conducted by van Os et al., (2009) to summarise rate data, reporting median prevalences for both age groups.

RESULTS

Our literature search yielded 3,597 papers. Titles and, as necessary, abstracts were read to determine articles of interest to the research question, yielding 199 papers. Of these, 26 (13%) had data on psychotic symptom prevalence in community samples of young people. Seven of these studies were excluded because they involved questionnaire surveys that did not contain a question of similar wording to the question chosen for the research protocol or because it was not possible to calculate the endorsement rate for such a question. A total of 19 studies met criteria for inclusion - 5 interview studies (Horwood et al., 2008, Kelleher et al., 2008, Kelleher et al., In Press, Polanczyk et al., 2010, Poulton et al., 2000) and 14 self report questionnaire studies (Barragan et al., 2011, De Loore et al., 2011, Dhossche et al., 2002, Kelleher et al., In Press, Kinoshita et al., 2011, Lataster et al., 2006, Laurens et al., 2011, Scott et al., 2009a, Scott et al., 2009b, Wigman et al., 2011, Yoshizumi et al., 2004, Yung et al., 2009) (see Table 1). Prevalence rates were extracted from each study. The median prevalence of psychotic symptoms was 17% for the child population (ages 9 to 12 years), and 7.5% for the adolescent population (ages 13 to 18 years).

DISCUSSION

To our knowledge, this is the first systematic review to report on the prevalence of psychotic symptoms specifically in children and adolescents. A median of 17% of the childhood sample (9 to 12 years) reported psychotic symptoms, and 7.5% of the adolescent sample (13 to 18 years) reported psychotic symptoms. This compares to a median prevalence of 5% reported by van Os and colleagues in a meta analysis of mainly adult studies of psychotic symptoms, which supports the idea that psychotic symptoms are more prevalent in childhood compared to adulthood. This is also in line with longitudinal research, which has shown a decline in the incidence of psychotic symptoms in young people followed over time (Bartels-Velthuis et al., 2011, De Loore et al., 2011, Dominguez et al., 2011, Laurens et al., 2011, Mackie et al., 2011).

Our study has a number of strengths: firstly, we used an ‘a priori’ design whereby our research question and inclusion criteria were formulated before the conduct of the review. Secondly, four independent researchers carried out the data searches and two independent researchers extracted the specific data. Our study is limited by the fact that we could not carry out a detailed assessment of bias at an individual study level. However, our use of a validated psychotic symptom assessment question used in all of the questionnaire studies helps us to control for quality of assessment across studies. The high amount of heterogeneity present across individual studies made the use of classical analytic techniques inappropriate, including meta-analytic methods of assessing for publication bias.
Hallucinations and delusions have typically been viewed as symptoms of psychosis and, in keeping with this, population research to date has largely considered these symptoms to represent a distributed risk for psychosis in the population (Polanczyk et al., 2010, van Os et al., 2009). However, the relatively high prevalence of these symptoms would suggest a lack of specificity in terms of risk for psychosis. This is, in fact, in line with recent research, which suggests that psychotic symptoms reported both in the clinic and in the community index risk for a much wider range of psychopathology than psychotic disorders (Addington et al., 2011, Kelleher et al., 2011b, Lencz et al., 2004). Varghese et al., (2011), for example, reported an increased prevalence of psychotic symptoms among individuals who screened positive for depressive and anxiety disorders on the Composite International Diagnostic Interview. Rossler et al., (2011) have recently shown that psychotic symptoms at age 19 or 20 years predict a wide range of (non-psychotic) mental disorders in follow up studies 30 years later. We have recently shown, using four population studies, that even in early adolescence the majority of individuals who report psychotic symptoms have at least one diagnosable (non-psychotic) Axis-1 disorder (Kelleher et al., In Press). In fact, we found that psychotic symptoms indexed particularly high risk for 2 or more co-occurring Axis-1 disorders in young people aged 11 to 16 years, suggesting that psychotic symptoms are important markers of risk for more severe psychopathology not limited to psychosis.

Two recent studies suggest that age is an important factor in the relationship between psychotic symptoms and psychopathology. Bartels-Velthuis et al., (2010) found that auditory hallucinations in children aged 7 to 8 years demonstrated only a minor association with psychopathology as measured by the Child Behavior Checklist (CBCL). However, when they reassessed these children at ages 12 to 13 years, they found that psychotic symptoms, whether persistent from childhood or newly incident, were strongly predictive of CBCL-rated psychopathology (Bartels-Velthuis et al., 2011). We have recently shown that while psychotic symptoms are reported more commonly in early adolescent samples compared to middle adolescence, the relationship with psychopathology is stronger in middle adolescence (Kelleher et al., In Press). While 57% of a general population sample of 11 to 13 year olds who reported psychotic symptoms had a diagnosable Axis-1 disorder, nearly 80% of a general population sample of 13 to 15-year olds who reported psychotic symptoms had an Axis-1 disorder. Overall, these findings suggest that, while psychotic symptoms may form part of normal childhood development, they become increasingly abnormal (and indicative of pathology) with age.

Research on the biological underpinnings of psychotic symptoms is still at an early stage. Alemany et al. (2011) recently documented the first allelic association with psychotic symptoms, demonstrating that persons exposed to childhood abuse who are Met carriers at the BDNF-Val66Met polymorphism are more likely to report...
psychotic symptoms, compared to persons who are Val homozygous. Magnetic resonance imaging research on adolescents with psychotic symptoms has demonstrated a number of anatomical and functional abnormalities, including in the cingulum and orbitofrontal cortex, while digital tractography imaging has revealed reduced integrity of fronto-temporal pathways (Jacobson et al., 2010). Laurens and colleagues demonstrated executive functioning and verbal and working memory problems, as well as error-processing dysfunction in a sample of young adolescents who reported psychotic symptoms in combination with speech or motor developmental delay and emotional or behavioural problems (Cullen et al., 2010, Laurens et al., 2010). Blanchard et al. (2010), meanwhile, demonstrated neurocognitive deficits in speed of processing as well as in tests of receptive language in adolescents with psychotic symptoms. Motor abnormalities have also been demonstrated by a number of studies, with dopamine dysregulation a suggested mechanism (Blanchard et al., 2010, MacManus et al., 2011, Mittal et al., 2011) Further work will be necessary in terms of neuro-genetics, imaging, electrophysiology and cognition to understand the ways in which psychotic symptoms contribute to a wide range of psychopathology in general and how these symptoms might contribute to psychosis in particular.

Conclusion

Psychotic symptoms are common in childhood and adolescence, with a median of 17% of 9 to 12 year olds and 7.5% of 13 to 18 year olds reporting symptoms. While an increased risk for psychosis is well established for young people who report psychotic symptoms (Poulton et al., 2000, Welham et al., 2009), recent research has highlighted the importance of these symptoms in relation to a wide variety of non-psychotic psychopathology, especially severe, comorbid Axis-1 disorders (Kelleher et al., In Press, Rossler et al., 2011). Further work is necessary to understand the ways in which psychotic symptoms play a role in the aetiology of psychiatric illness.

*Corresponding authors
iankelleher@rcsi.ie, marycannon@rcsi.ie
Address for correspondence: Royal College of Surgeons in Ireland, Department of Psychiatry, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland. Tel +353 1 8093855

Acknowledgements:
The research leading to these results has received funding from the European Community's Seventh Framework Programme under grant agreement No. HEALTH-F2-2010-241909 (Project EU-GEI). EU-GEI is the acronym of the project European network of National Schizophrenia Networks Studying Gene-Environment Interactions. This work was also supported by an Essel National Alliance for Research on Schizophrenia and Depression/The Brain and Behavior Research Foundation Independent Investigator award and by a Clinician Scientist Award (CSA/2004/1) from the Health Research Board (Ireland) to M.C.

The reference for this paper is: Kelleher I, Connor D, Clarke MC, Devlin N, Harley M, Cannon M. Prevalence of psychotic symptoms in childhood and adolescence: a systematic review and meta-analysis of population-based studies. Psychological Medicine 2012; doi:10.1017/S0033291711002960
References

